
BUILDING ROBUST NATURAL LANGUAGE PROCESSING SYSTEMS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Robin Jia

August 2020

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/sy076hp2674

© 2020 by Robin Jia. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/sy076hp2674

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Percy Liang, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Dan Jurafsky

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christopher Manning

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

Modern natural language processing (NLP) systems have achieved outstanding performance on

benchmark datasets, in large part due to the stunning rise of deep learning. These research advances

have led to great improvements in production systems for tasks like machine translation, speech

recognition, and question answering. However, these NLP systems still often fail catastrophically

when given inputs from di�erent sources or inputs that have been adversarially perturbed. This

lack of robustness exposes troubling gaps in current models' language understanding capabilities,

and creates problems when NLP systems are deployed to real users.

In this thesis, I will argue that many di�erent aspects of the current deep learning paradigm for

building NLP systems can be signi�cantly improved to ensure greater robustness. In the �rst half of

this thesis, I will build models that are robust to adversarially chosen perturbations. State-of-the-art

models that achieve high average accuracy make surprising errors on inputs that have been slightly

perturbed without altering meaning, for example by replacing words with synonyms or inserting

typos. For a single sentence, there is a combinatorially large set of possible word-level perturba-

tions, so guaranteeing correctness on all perturbations of an input requires new techniques that can

reason about this combinatorial space. I will present two methods for building NLP systems that

are provably robust to perturbations. First, certi�ably robust training creates robust models by

minimizing an upper bound on the loss that the worst possible perturbation can induce. Second,

robust encodings enforce invariance to perturbations through a carefully constructed encoding layer

that can be reused across di�erent tasks and combined with any model architecture. Our improve-

ments in robustness are dramatic: certi�ably robust training improves accuracy on examples with

adversarially chosen word substitutions from 10% to 75% on the IMDB sentiment analysis dataset,

while robust encodings improve accuracy on examples with adversarially chosen typos from 7% to

71% on average across six text classi�cation datasets from the GLUE benchmark.

In the second half of the thesis, I will consider robustness failures that stem from the unrealistic

narrowness of modern datasets. Datasets for tasks like question answering or paraphrase detection

contain only a narrow slice of all valid inputs, so models trained on such datasets often learn

to predict based on shallow heuristics. These heuristics generalize poorly to other similar, valid

inputs. I will present methods for both constructing more challenging test data and collecting

iv

training data that aids generalization. For the task of question answering, I will use adversarially

constructed distracting sentences to reveal weaknesses in systems that standard in-distribution test

data fails to uncover. In our adversarial setting, the accuracy of sixteen contemporaneous models

on the SQuAD dataset drops from an average of 75% F1 score to 36%; on a current state-of-the-art

model, accuracy drops from 92% F1 score to 61%. For pairwise classi�cation tasks, I will show that

active learning with neural sentence embedding models collects training data that greatly improves

generalization to test data with realistic label imbalance, compared to standard training datasets

collected heuristically. On a realistically imbalanced version of the Quora Question Pairs paraphrase

detection dataset, our method improves average precision from 2% to 32%. Overall, this thesis shows

that state-of-the-art deep learning models have serious robustness defects, but also argues that by

modifying di�erent parts of the standard deep learning paradigm, we can make signi�cant progress

towards building robust NLP systems.

v

Acknowledgements

First and foremost, I would like to thank my advisor, Percy Liang. When I started my Ph.D., I had

never done any research outside of computational biology, but had somehow decided that if I was

going to switch research areas, I wanted to study natural language processing. Percy agreed to take

me as a rotation student and made this possible. He has been a fantastic advisor, and I feel so lucky

to have gotten the chance to work with him and learn from him. Percy is amazingly supportive,

superhumanly productive, and full of extremely helpful feedback. I am also in awe of his razor-sharp

insights; I have often found myself realizing, after thinking on it for many days, that an idea Percy

suggested but I had initially rejected was actually right on target.

I would also like to thank Chris Manning, Dan Jurafsky, Chris Potts, and Tengyu Ma, for serving

on my thesis committee. I have always been impressed by Chris Manning's seemingly boundless

wisdom and knowledge; every time I talk to him, I feel like I learn so much (and realize how much

I don't know). Dan's positivity is contagious, and I always feel energized after talking with him.

I am grateful to Chris Potts for all his help, whehter in �nding philosophy of language papers for

reading group or giving me job market advice. I appreciate Tengyu's feedback on my job talk and

thesis defense.

Research can often be an emotional roller coaster, but sharing the journey with so many friends

makes it much less scary. I have been lucky to be part of two very welcoming and supportive research

communities: Percy's research group, p-lambda, and the Stanford NLP Group. I want to start by

thanking my many fantastic collaborators: Dallas Card, Chris Donahue, Kerem Göksel, Kelvin

Guu, Braden Hancock, He He, Peter Henderson, Erik Jones, Amita Kamath, Urvashi Khandelwal,

Mina Lee, Juncen Li, Nelson Liu, Kyle Mahowald, Steve Mussmann, Panupong �Ice� Pasupat, Aditi

Raghunathan, Pranav Rajpurkar, Megha Srivastava, and Sida Wang. Collaborating with these

colleagues has been not only productive but also incredibly enjoyable. I especially want to thank

Amita and Erik for being wonderful mentees: it is such a great pleasure to mentor students who are

so dedicated, insightful, and kind. From Stanford, I also would like to thank Jonathan Berant, Arun

Chaganty, Danqi Chen, Sidd Karamcheti, Fereshte Khani, Pang Wei Koh, Ananya Kumar, Tatsu

Hashimoto, John Hewitt, Dan Iter, Will Munroe, Allen Nie, Peng Qi, Siva Reddy, Shiori Sagawa,

Jacob Steinhardt, Michael Xie, Fanny Yang, Michi Yasunaga, Hugh Zhang, Yuchen Zhang, and

vi

Yuhao Zhang. In addition, I would like to thank Eunsol Choi, Adam Fisch, Minjoon Seo, and Alon

Talmor, with whom (along with Danqi and Jonathan) I had the great opportunity to co-organize

the Machine Reading for Question Answering workshop. Finally, I want to especially thank Tatsu,

Danqi, Eunsol, He, and Chris for their help and advice over the past year as I applied for academic

jobs.

I am very grateful to my Microsoft Research internship mentor Hoifung Poon and co-author

Cli� Wong, who gave me the opportunity to rekindle my interest in biology through working on

biomedical NLP. Hoifung has been a very supportive and thoughtful mentor, and I am very glad I

had the chance to work with him. I also want to thank Larry Heck, Dilek Hakkani-Tür, and Georgi

Nikolov for mentoring me during my internship at Google Research.

I was fortunate to have excellent research mentors throughout my Stanford undergraduate career.

I am very grateful to David Dill for agreeing to take me on as a CURIS summer research intern,

back when I was a freshman who had only completed one real computer science class, and to Rob

Bruggner for being my �rst graduate student mentor. I am also very grateful to Gill Bejerano, with

whom I had the great pleasure of working during my junior and senior years. Gill's passion for

genomics has always been a great inspiration to me. I would also like to thank the many Bejerano

Lab members who supported me and gave me advice, especially Gray Camp, Harendra Guturu, and

Jim Notwell.

Music has been an integral part of my life for a very long time. I am so lucky to have studied

piano performance for nine years at Stanford with Laura Dahl�more if you also include her fantastic

art song classes. Laura helped me grow so much as a musician, especially in my ability to listen

carefully to both my own playing and that of my playing partners. I have also been very fortunate

to study with Stephen Harrison, Kumaran Arul, and George Barth. Next, I want to thank the many

wonderful musicians with whom I have had the privilege of making music: Lee Fan, Brad Girardeau,

Andrew Guo, Jessy Hwang, Pang Wei Koh, Kevin Sun, Lisa Wang, and Ricky Wedeen. Finally, I

am deeply grateful to Angela Wright, my piano teacher of twelve years before I came to Stanford.

Learning to play the piano with Miss Wright taught me so much about not only music but also the

value of hard work and practice. Playing the piano growing up also gave me a wealth of invaluable

experience as a performer, which I have leaned on throughout graduate school.

I want to thank the many wonderful friends from outside of the Ph.D. program who have kept

me sane over the past many years: Avanti Badrinathan, Catherine Chen, Charles Chen, Frank Chen,

Jack Chen, Eddy Dai, Cynthia Day, Yifan Mai, Rohan Puttagunta, Brian Raftrey, Kris Sankaran,

Raymond Wu, and Lynnelle Ye.

Finally, I want to thank my parents for their love and support throughout my Stanford journey

(and for housing me for the last �ve months while we shelter-in-place due to COVID-19). I am

deeply indebted to you for all you have done for me.

vii

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Recent successes in NLP . 1

1.2 The robustness problem . 3

1.3 Solving tasks requires handling worst-case examples 4

1.3.1 The Turing Test . 4

1.3.2 Generalizing to the worst case in linguistics 5

1.4 Motivating settings . 6

1.4.1 Systematic language understanding . 6

1.4.2 Real-world adversaries . 7

1.4.3 Avoiding bias . 8

1.4.4 Realistic distribution shift . 8

1.5 Building robust NLP systems . 9

1.6 Outline . 10

1.6.1 Adversarial perturbations . 10

1.6.2 Weaknesses of standard datasets . 11

2 Background 12

2.1 Brittleness in expert systems . 12

2.2 Robustness in machine learning . 13

2.3 Example-level perturbations . 14

2.3.1 Adversarial examples in computer vision . 15

2.3.2 Spam classi�cation . 18

2.3.3 Adversarial perturbations and neural NLP . 18

2.4 Reweighting and subgroups . 19

2.4.1 Bias against underrepresented groups . 20

viii

2.4.2 Analysis of challenging subsets . 21

2.4.3 Distributionally robust optimization . 21

2.5 Extrapolation . 22

2.5.1 Domain adaptation and domain generalization 22

2.5.2 Stress tests . 24

2.5.3 Unnatural inputs . 24

2.6 Other adversarial and robust methods . 25

2.6.1 Generative adversarial networks . 25

2.6.2 Domain-adversarial training . 25

2.6.3 Robust statistics and data poisoning . 26

2.6.4 Improving standard accuracy . 26

3 Certi�ably Robust Training 27

3.1 Setup . 29

3.1.1 Perturbations by word substitutions . 29

3.1.2 Robustness to all perturbations . 29

3.2 Certi�cation via interval bound propagation . 30

3.2.1 Bounds for the input layer . 31

3.2.2 Interval bounds for elementary functions . 32

3.2.3 Final layer . 34

3.2.4 Certi�ably robust training with IBP . 34

3.3 Tasks and models . 35

3.3.1 Tasks . 35

3.3.2 Models . 35

3.4 Experiments . 36

3.4.1 Setup . 36

3.4.2 Main results . 39

3.4.3 Clean versus robust accuracy . 40

3.4.4 Runtime considerations . 41

3.4.5 Error analysis . 42

3.4.6 Training schedule . 43

3.4.7 Word vector analysis . 43

3.4.8 Certifying long-term memory . 44

3.5 Discussion . 45

4 Robust Encodings 47

4.1 Setup . 49

4.2 Robust Encodings . 50

ix

4.2.1 Encoding functions . 51

4.2.2 Encoding function desiderata . 51

4.3 Robust Encodings for Typos . 52

4.3.1 Encodings as clusters . 53

4.3.2 Simple example . 53

4.3.3 Encoding out-of-vocabulary tokens . 55

4.3.4 Connected component encodings . 55

4.3.5 Agglomerative cluster encodings . 56

4.3.6 Mapping clusters to encoded tokens . 58

4.4 Experiments . 58

4.4.1 Setup . 58

4.4.2 Baseline models. 60

4.4.3 Models with RobEn . 61

4.4.4 Robustness gains from RobEn . 61

4.4.5 Reusable encodings . 63

4.4.6 Agglomerative clustering trade-o� . 64

4.4.7 Internal permutation attacks . 64

4.4.8 Constrained adversaries . 65

4.5 Discussion . 66

5 Adversarial Evaluation for Reading Comprehension 68

5.1 The SQuAD dataset and models . 70

5.1.1 Dataset . 70

5.1.2 Models . 70

5.1.3 Standard evaluation . 70

5.2 Adversarial evaluation . 70

5.2.1 General framework . 70

5.2.2 Semantics-preserving adversaries . 71

5.2.3 Concatenative adversaries . 71

5.2.4 AddSent . 72

5.2.5 AddAny . 74

5.3 Experiments . 75

5.3.1 Setup . 75

5.3.2 Main experiments . 75

5.3.3 Human evaluation . 76

5.3.4 Subsequent models . 77

5.3.5 Analysis . 77

5.3.6 Transferability across models . 79

x

5.3.7 Training on adversarial examples . 80

5.4 Discussion . 81

6 Active Learning for Imbalanced Pairwise Tasks 84

6.1 Setting . 87

6.1.1 Data collection . 87

6.1.2 Evaluation . 87

6.1.3 Pairwise tasks . 88

6.2 Results training on heuristic datasets . 88

6.2.1 Evaluation . 89

6.2.2 Datasets . 89

6.2.3 Models . 91

6.2.4 Evaluation results . 91

6.2.5 Manual veri�cation of imputed negatives . 92

6.3 Active learning for pairwise tasks . 93

6.3.1 Active learning . 93

6.3.2 Modeling and implementation . 94

6.4 Active learning experiments . 95

6.4.1 Experimental details . 95

6.4.2 Main results . 96

6.4.3 Manual veri�cation of imputed negatives . 97

6.4.4 Comparison with strati�ed sampling . 97

6.4.5 Training other models on collected data . 98

6.4.6 Learning curves and data e�ciency . 99

6.4.7 E�ect of seed set . 99

6.5 Discussion . 100

7 Conclusion 102

7.1 Future directions . 103

7.1.1 Systematicity and consistency . 103

7.1.2 Side-e�ects of adversarial robustness . 104

7.1.3 Adversarial data collection . 105

7.1.4 Knowing when to abstain . 106

7.1.5 Solving synthetic tasks . 106

7.2 Final thoughts . 107

A Supplemental material for Chapter 3 124

A.1 Numerical stability of softmax . 124

xi

B Supplemental material for Chapter 6 127

B.1 Evaluation details . 127

B.2 Incorporating manual labels . 128

xii

List of Tables

3.1 Hyperparameter choices for certifably robust models. 39

3.2 Robustness to word substitution perturbations on IMDB. 40

3.3 Robustness to word substitution perturbations on SNLI. 41

3.4 Holding ε and κ �xed during certi�ably robust training. 44

4.1 Robustness to typos on six GLUE datasets. 62

4.2 Percentage of test examples with |Bα(x)| = 1. 63

4.3 Robustness to internal permutations on six GLUE datasets. 65

5.1 Contrasting oversensitivity and overstability. 72

5.2 Adversarial evaluation of Match-LSTM and BiDAF. 75

5.3 Adversarial evaluation of sixteen SQuAD models. 76

5.4 Human evaluation on adversarial SQuAD examples. 76

5.5 Adversarial evaluation of �ve more recent SQuAD models. 77

5.6 Transferability of SQuAD adversarial examples. 81

5.7 Training BiDAF on AddSent. 81

6.1 Statistics of QQP and WikiQA. 90

6.2 All-pairs generalization of state-of-the-art models. 91

6.3 Hyperparameter choices for QQP and WikiQA. 95

6.4 Active learning results with all-pairs evaluation. 96

6.5 Positive examples collected by di�erent data collection methods. 96

6.6 Comparison of active learning and strati�ed sampling. 98

6.7 Comparison of CosineBERT and ConcatBERT. 98

xiii

List of Figures

1.1 Thesis outline. 9

2.1 Example of imperceptible adversarial perturbation in computer vision. 16

3.1 Word substitution perturbations in sentiment analysis. 28

3.2 Computing a certi�cate of robustness with interval bound propagation. 31

3.3 Interval bounds for word vectors. 32

3.4 Trade-o� between clean accuracy and adversarial accuracy. 42

3.5 Number of perturbations by word substitution adversary. 43

4.1 Overview of robust encodings. 48

4.2 Typo-based attack surface. 49

4.3 Visualization of high-�delity and high-stability encodings. 54

4.4 Histogram of |Bα(x)| for SST-2 and RTE. 63

4.5 Histograms of |Bα(x)| for MRPC, QQP, MNLI, and QNLI. 64

4.6 Stability-�delity trade-o� for agglomerative clusters. 65

4.7 Robustness when adversary can add at most b typos. 66

5.1 An adversarial example for SQuAD. 69

5.2 Illustration of AddSent and AddAny. 73

5.3 Plot of model failures on AddSent and n-gram overlap. 79

5.4 Plot of model failures on AddSent and question length. 80

6.1 False positives by ConcatBERT on all-pairs test data. 92

6.2 Comparison of active learning and static retrieval. 99

6.3 Uncertainty sampling using di�erent seed sets. 100

xiv

Chapter 1

Introduction

1.1 Recent successes in NLP

If standard benchmarks are to be believed, natural language processing (NLP) systems are now

remarkably good at a wide range of language understanding tasks. The rise of deep learning, and

in particular the success of unsupervised pre-training (Peters et al., 2018; Devlin et al., 2019), has

led to impressive results across many NLP datasets. Consider the Stanford Question Answering

Dataset (SQuAD), a dataset for the task of question answering (Rajpurkar et al., 2016). Given a

paragraph from Wikipedia and a reading comprehension question, a system must �nd the word or

phrase in the paragraph that answers the question. In the original SQuAD paper from June 2016,

the best baseline system achieved only 51.0% F1 score.1 Crowdworkers asked to answer these same

questions got 91.2% F1 score, indicating signi�cant room for improvement.2 As of August 2020, the

best system on the SQuAD leaderboard has 95.4% F1 score, surpassing the measured human-level

accuracy.3

SQuAD is merely one NLP dataset that deep learning has �solved.� In the last few years, neural

models have achieved near-human or super-human accuracy on many well-studied NLP datasets:

• Introduced in June 2018, SQuAD 2.0 was designed to be a more challenging successor to

SQuAD, due to the inclusion of unanswerable questions that look similar to answerable ones

(Rajpurkar et al., 2018). Between June 2018 and August 2020, the state-of-the-art improved

from 66.3% F1 score to 93.0% F1 score, outperforming the human accuracy of 89.5% F1.4

1The F1 score here is an evaluation metric de�ned in Rajpurkar et al. (2016) that gives partial credit for partially
correct answers. This is distinct from the standard F1 score used for binary classi�cation.

2Strictly speaking, the human and system scores for SQuAD are not directly comparable, as the human scores are
computed against one fewer reference answer than the system scores. The evaluation metric gives credit for matching
any reference answer, so this puts humans at a slight disadvantage compared to the systems. The numbers on SQuAD
2.0 reported below do not su�er from this problem.

3https://rajpurkar.github.io/SQuAD-explorer/
4https://rajpurkar.github.io/SQuAD-explorer/

1

https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/

CHAPTER 1. INTRODUCTION 2

• Introduced in April 2018, the General Language Understanding Evaluation (GLUE) bench-

mark is a compilation of ten datasets chosen to test a broad array of language understanding

abilities (Wang et al., 2019b). Systems are evaluated on GLUE score, a macro average of

task-speci�c evaluation metrics across the ten datasets. Between April 2018 and August 2020,

the state-of-the-art improved from 60.3 GLUE score to 90.7, surpassing the human score of

87.1.5

• In response to the progress on GLUE, SuperGLUE was introduced in May 2019 as the successor

to GLUE. It retains the format of GLUE but uses a more challenging suite of datasets (Wang

et al., 2019a). Between May 2019 and August 2020, the state-of-the-art improved from 71.5

to 89.3, within half a point of the human accuracy of 89.8.6

• While the above results come primarily on datasets built for NLP research, NLP systems

have also reached impressive accuracy on exams designed for (human) students. Introduced

in April 2017, RACE (ReAding Comprehension dataset from Examinations) is a dataset of

expert-written reading comprehension questions from English language standardized exams for

Chinese middle and high school students (Lai et al., 2017). Between April 2017 and August

2020, the state-of-the-art improved from 44.1% accuracy to 90.9%. Crowdworkers on Amazon

Mechanical Turk only got 73.3% accuracy on these questions (however, the authors estimate

that an expert human could achieve 94.5%).7

• In September 2019, Clark et al. (2019b) reported 90.7% accuracy on text-based questions from

a standardized science exam for American eighth grade students. In comparison, their initial

system from 2014 could achieve only 36.4% accuracy, and their 2018 system could achieve

73.1% accuracy.

What should we make of these impressive results? It may be tempting to conclude from results

on these datasets that current systems are as good as humans at many NLP tasks. However,

this conclusion is not warranted.8 A dataset like SQuAD captures one particular distribution over

documents and questions. The general task of question answering is much broader, encompassing

5 Baseline results come from the �rst version of the GLUE paper made public in April 2018 (https://arxiv.org/
abs/1804.07461v1). State-of-the-art results are taken from the GLUE leaderboard (https://gluebenchmark.com/
leaderboard). The best baseline reported on the GLUE leaderboard achieves 70.0 GLUE score and is dated February
2019.

6https://super.gluebenchmark.com/leaderboard
7http://www.qizhexie.com/data/RACE_leaderboard.html
8Nevertheless, some media outlets have drawn such conclusions, including CNN (�Comput-

ers are getting better than humans at reading,� https://money.cnn.com/2018/01/15/technology/

reading-robot-alibaba-microsoft-stanford/index.html) and USA Today (�Robots are better at reading
than humans,� https://www.usatoday.com/story/tech/news/2018/01/16/robots-better-reading-than-humans/

1036420001/). Many other media outlets did report on this same event in more tem-
pered language, such as the Washington Post (�AI models beat humans at reading comprehen-
sion, but they've still got a ways to go,� https://www.washingtonpost.com/business/economy/

ais-ability-to-read-hailed-as-historical-milestone-but-computers-arent-quite-there/2018/01/16/

04638f2e-faf6-11e7-a46b-a3614530bd87_story.html).

https://arxiv.org/abs/1804.07461v1
https://arxiv.org/abs/1804.07461v1
https://gluebenchmark.com/leaderboard
https://gluebenchmark.com/leaderboard
https://super.gluebenchmark.com/leaderboard
http://www.qizhexie.com/data/RACE_leaderboard.html
https://money.cnn.com/2018/01/15/technology/reading-robot-alibaba-microsoft-stanford/index.html
https://money.cnn.com/2018/01/15/technology/reading-robot-alibaba-microsoft-stanford/index.html
https://www.usatoday.com/story/tech/news/2018/01/16/robots-better-reading-than-humans/1036420001/
https://www.usatoday.com/story/tech/news/2018/01/16/robots-better-reading-than-humans/1036420001/
https://www.washingtonpost.com/business/economy/ais-ability-to-read-hailed-as-historical-milestone-but-computers-arent-quite-there/2018/01/16/04638f2e-faf6-11e7-a46b-a3614530bd87_story.html
https://www.washingtonpost.com/business/economy/ais-ability-to-read-hailed-as-historical-milestone-but-computers-arent-quite-there/2018/01/16/04638f2e-faf6-11e7-a46b-a3614530bd87_story.html
https://www.washingtonpost.com/business/economy/ais-ability-to-read-hailed-as-historical-milestone-but-computers-arent-quite-there/2018/01/16/04638f2e-faf6-11e7-a46b-a3614530bd87_story.html

CHAPTER 1. INTRODUCTION 3

a wide variety of documents that are understandable to humans and questions that humans could

answer based on those documents. Since datasets are much narrower than the underlying task,

impressive results on benchmark datasets can paint an overly optimistic picture of how well models

work in general.

In fact, state-of-the-art systems achieve impressive benchmark results by specializing heavily to

the datasets on which they are trained and evaluated�not by solving the general underlying task.

In a standard benchmark setting, systems are built using provided training data, then evaluated on

test data that was created in the same way as the training data. High accuracy on these benchmarks

does not ensure that models can generalize to examples created in a di�erent way, even though such

generalization would be expected of a system that solves the underlying task. For example, we can

ask how well a SQuADmodel generalizes to TriviaQA (Joshi et al., 2017), another question answering

dataset in the same format as SQuAD. While SQuAD was collected by asking crowdworkers to write

questions about Wikipedia paragraphs, TriviaQA took questions written for trivia competitions and

then matched them automatically with web documents. Yogatama et al. (2019) train a standard

BERT-base model (Devlin et al., 2019) on SQuAD training data and achieve 86.5% F1 score on

the SQuAD development set. However, this model only manages a paltry 35.6% F1 score on the

TriviaQA development set.9 Despite its high accuracy on SQuAD, the model performs very poorly

on other datasets in the same format.

1.2 The robustness problem

What is missing from the aforementioned SQuAD model, as well as current state-of-the-art NLP

systems in general, is robustness. Since �robustness� has become a somewhat overloaded term, here

we unpack exactly what we mean by robustness in this thesis. Sussman (2007) de�nes robust systems

as �systems that have acceptable behavior over a larger class of situations than was anticipated

by their designers.� In the context of machine learning, Schain (2015) de�nes robustness as �the

sensitivity of a learning algorithm to discrepancies between the assumed model and reality.� Both

de�nitions have a similar spirit, and seem like good properties for an NLP system to have, but are

quite vague. What situations do designers of NLP systems anticipate? What assumptions do the

learning algorithms they use typically make?

One important assumption on which most current work in NLP heavily relies is the in-distribution

assumption�the assumption that the training data and test data are drawn from the same (or

roughly the same) data generating distribution.10 The in-distribution setting is tailor-made for

9This gap is not due to TriviaQA being fundamentally much harder or noisier than SQuAD. Yogatama et al.
(2019) also show that the same model architecture trained with a mixture of TriviaQA training data and other
training data achieves 72.5% F1 score on TriviaQA. Training with SQuAD and TriviaQA alone achieves over 75%
F1 score on TriviaQA, though the exact number is not provided. As of August 2020, the best system on the o�cial
TriviaQA leaderboard (https://competitions.codalab.org/competitions/17208#results) achieves 93.0% F1 on the
Web veri�ed test dataset, which is comparable to the evaluation set used by Yogatama et al. (2019).

10 For some datasets like MultiNLI (Williams et al., 2018), which is part of GLUE, the training and test distributions

https://competitions.codalab.org/competitions/17208#results

CHAPTER 1. INTRODUCTION 4

the current dominant approach for building NLP systems, supervised learning (in particular, deep

learning). In supervised learning, models are trained to produce the correct output on a set of

training examples, with the hope that they will learn patterns that generalize to other test examples

not seen during training. Supervised learning commonly assumes that training data and test data

come from the same distribution, and standard approaches can be theoretically proven to generalize

well in this in-distribution setting. In this thesis, we de�ne robustness as the ability of a model to

perform well on test data that di�ers in distribution from its training data�in other words, when

the in-distribution assumption is violated.

1.3 Solving tasks requires handling worst-case examples

While we have established our focus on mismatches between training and test data, there is still a

question of how the test data and training data di�er. For instance, we could focus on robustness

to domain shift, such as training on SQuAD and testing on TriviaQA. While this is an active area

of research, we choose a di�erent route. Much of the work in this thesis focuses on adversarial

robustness, in which we evaluate on a worst-case (i.e., adversarially chosen) test distribution from

a set of possible test distributions. As we will see throughout this thesis, models often perform

very poorly on adversarially chosen test distributions that are seemingly very similar to the training

distribution. The fact that accuracy drops precipitously when the data distribution changes in a

seemingly small way makes adversarial robustness problems especially surprising and troubling.

In this section, we argue that adversarial robustness is closely related to the goal of solving

language understanding tasks, rather than datasets. A system that does well on SQuAD but fails

on other questions clearly has not solved the general task of question answering. To actually solve

the task, a system would have to be able to produce reasonable answers when presented with any

paragraph and question that is easy for a human well-versed in the language. Another way of

phrasing this requirement is that no adversary should be able to �nd paragraphs and questions that

stump the model but are easy for humans.

1.3.1 The Turing Test

In arti�cial intelligence (AI), the connection between true intelligent behavior (e.g., solving a broad

task) and robustness to adversarial examples dates back many decades to Alan Turing's famous

Imitation Game, the Turing Test (Turing, 1950). Turing sought to de�ne su�cient conditions

under which a machine could be said to exhibit intelligent behavior. In the Turing Test, a human

di�er, as some text sources were excluded from the training data and only present in the test data. Empirically, current
systems generalize very well across these particular types of train-test mismatch, likely because the same data collection
procedure was used to generate all examples, leading to persistent similarities despite the di�erence in text source.
More minor di�erences in distribution are also somewhat common; for instance, SQuAD (Rajpurkar et al., 2016) uses
di�erent Wikipedia articles at training time and test time.

CHAPTER 1. INTRODUCTION 5

interrogator poses natural language questions to an agent�either a human or a machine�in order

to determine whether the agent is in fact a human or machine. If a competent interrogator cannot

distinguish the machine from a human, Turing argued that this demonstrates human-like intelligence

on the part of the machine.11

Crucially, Turing's interrogator is adversarial : they are incentivized to ask precisely those ques-

tions that would reveal non-humanlike behavior on the part of the computer. Therefore, the machine

can only succeed if it is prepared to answer any question that the interrogator could ask. The pres-

ence of the adversary does not imply that intelligence or language understanding is a fundamentally

adversarial concept. Instead, the adversarial nature of this interrogation serves to ensure that the

interrogator will ask a su�ciently challenging and diverse array of questions. Robustness in the face

of such a strong adversary is strong evidence of intelligent behavior, since if the agent had some seri-

ous �aw, an intelligent adversary would be able to identify and expose it. Throughout this thesis, we

will consider test distributions that are�to varying degrees�adversarially chosen to expose models'

weaknesses. Our ultimate goal is not to be antagonistic; on the contrary, we challenge systems so

that we can identify and quantify their shortcomings and make measurable progress on building

general language understanding systems.

1.3.2 Generalizing to the worst case in linguistics

The desire to account for worst-case instances also pervades the study of linguistics. This drive

can be seen, for instance, in Richard Montague's work on formal semantics (Montague, 1970, 1973).

Montague developed an elegant theory of semantics based on the lambda calculus in which phrases

of the same syntactic category could be assigned identical semantic types. These semantic types

are sometimes non-obvious. For instance, Montague chose to treat adjectives as functions from

properties to properties, even though many adjectives (e.g., �red�) are intersective (i.e., �red cars�

denotes precisely the set of cars that are also red) and therefore could be thought to have much

simpler extensions. However, Montague pointed to the existence of non-intersective adjectives like

�big� (a �big �ea� is not necessarily a big entity) and non-subsective adjectives like �alleged� (an

�alleged intruder� need not be an intruder), and concluded that a proper account of all adjectives

demanded a more general semantic type (Montague, 1970). Montague's approach has been given

the name �generalizing to the worst case� (Partee, 2007), as he purposefully constructed his theory

so that it could uniformly handle these worst-case examples. We study worst-case examples with

the same hope that they can shed light on ways we can improve our models of language.

11We distinguish the original test proposed in Turing (1950) with a modern colloquial usage of the term �Turing
Test� to refer to any evaluation in which a human must guess whether a generated output was produced by a human
or a computer. While this is another type of imitation game, it lacks an adversarial interrogator, so passing such a
test is a much weaker indication of intelligent behavior.

CHAPTER 1. INTRODUCTION 6

1.4 Motivating settings

We have so far argued that progress on language understanding requires consideration of worst-case

examples, but have not speci�ed the types of worst-case examples on which we plan to focus. While

the Turing Test serves as theoretical inspiration, it does not provide any practical guidance on this

question; it simply demands that all questions a human interrogator may come up with should be

answered, an unrealistic standard for current models (Shieber, 2016).

One possible approach is to focus on narrowly-de�ned tasks for which a complete solution seems

within reach, then scale up to broader tasks; we will consider this idea more in Chapter 7. However,

most research on robustness does not alter the task de�nition, but instead studies how to defend

against a constrained adversary that can only create certain kinds of hard examples, as opposed to

the unconstrained adversary of the Turing Test. By restricting our purview to certain prescribed test

distribution shifts, we can focus on solving speci�c aspects of the broader language understanding

problem. Here we discuss several more constrained settings that provide motivation for studying

adversarial robustness.

1.4.1 Systematic language understanding

To test whether a computer system understands natural language, it is natural to �rst ask what

is known about natural language, and then determine whether the system knows this. We thus

turn to the literature on linguistics and cognitive science for inspiration. In particular, one central

concept in semantics is the Principle of Compositionality, which states that the meaning of a

complex linguistic expression is a function of the meaning of its syntactic constituents and the way

their meanings are composed. Compositionality is often invoked to explain the in�nite productivity

of language�from a �nite set of lexicon entries and grammar rules, it is possible to generate an

in�nite set of acceptable sentences with understandable meanings. The related concept of system-

aticity provides us with a way to behaviorally measure whether a system understands language

compositionally (Fodor and Pylyshyn, 1988). Humans language understanding is systematic, in

that the ability to understand certain sentences is inherently tied to the ability to understand other

sentences. If a person understands the sentence �John likes the dog,� they certainly also understand

the sentence �The dog likes John.� There are simply no human beings in the world who would

understand the former but be confused by the latter. Compositionality explains which sentences are

related systematically with each other: two sentences must be systematically related if they involve

the same syntactic constituents and same composition rules.

In Chapter 3, we will develop methods for achieving robustness to adversarial label-preserving

word substitutions. These substitutions represent a very basic test of systematicity: if a system is

correct on an input, and a word in that input is replaced with a word that the model is familiar with

and is synonymous (or nearly synonymous) with the original word, it ought to continue predicting

CHAPTER 1. INTRODUCTION 7

the correct answer. A failure to do so would indicate a lack of systematicity. We will also discuss

possible ways to extend this setting to consider compositional structure beyond simple word-for-word

substitutions.

It is of course the case that compositionality and systematicity do not encompass all of the

important things known about language. Moreover, in this thesis we will only test systematicity in

a very restricted sense. Our aim is to start with the most elementary properties of language, and

assess whether systems have mastered these basics. We believe this to be particularly important

given the black-box nature of modern deep learning models, which makes it di�cult to reason

about their likely failure modes. In the past, standard statistical models had structures that made

at least some of their �aws easy to predict. For example, bag-of-words models are insensitive to

word order; n-gram language models are unable to recall long-range context; probabilistic context

free grammars and conditional random �elds make explicit conditional independence assumptions.

However, neural networks pose a challenge for such a priori analysis of model shortcomings, as neural

networks of su�cient complexity can famously approximate any function of their input. Judging

from their impressive benchmark results, neural networks have likely managed to approximately

learn about many linguistic phenomena, but their inscrutability should make us question whether

they have mastered any of them. Adopting this mentality, we therefore start with the simplest tests

of competence, and �nd that models indeed often fail these basic tests.

Also along these lines, in Chapter 5 we will construct examples that are reminiscent of minimal

pairs, which are commonly used in linguistics to show how small changes in a sentence can give rise

to shifts in meaning or acceptability. Again, these minimal pairs will purposefully be quite simplistic

compared to the ones commonly studied in the linguistics literature, in order to �nd the simplest

challenge that nonetheless confounds current NLP models.

1.4.2 Real-world adversaries

Not all adversaries are well-meaning theoretical interrogators; adversarial agents often have strong

incentives to attempt to manipulate the predictions of real-world NLP systems. For example, spam

detection systems must be able to identify spam in spite of spammers attempting to bypass these

�lters (Dalvi et al., 2004; Lowd and Meek, 2005). Search engine optimization rankings make use of

textual features, and website creators have strong incentives to �nd ways to arti�cially increase their

website's predicted relevance to user queries. More recently, systems that �ag hateful social media

content for review must be robust to adversaries who wish to evade detection (Hosseini et al., 2017).

Defending against these threats requires building systems that are robust to whatever alterations an

attacker might apply to text in order to achieve the desired classi�er behavior. In general, this space

of possible alterations is very large, and may be very di�cult even to de�ne. Nonetheless, we can

at least strive to make the adversaries' jobs more di�cult by making models robust to some types

of common alterations, such as synonym replacements or typos.

CHAPTER 1. INTRODUCTION 8

1.4.3 Avoiding bias

It is often the case that available datasets do not exactly represent the data distribution of interest.

One particularly problematic case is when the dataset is biased in some way against a particular

demographic group, which often leads to model predictions that unfairly disadvantage members

of that group. For example, naturally occurring data will often underrepresent minority groups,

so systems can do well on average while having high error rates on these groups (Blodgett et al.,

2016; Tatman, 2017; Buolamwini and Gebru, 2018; Sap et al., 2019). Datasets may also recapitulate

stereotypes tied to historical injustices, which incentivizes models to learn these very stereotypes to

achieve the best test accuracy (Zhao et al., 2017, 2018; Rudinger et al., 2018). Training data collected

from current users of a system will likely be skewed towards users for which the system works well,

leading to a feedback loop in which underserved users become increasingly underrepresented in the

training data (Hashimoto et al., 2018). In many cases, avoiding these types of biases can be thought

of as optimizing a worst-case objective in which an �adversary� may change the data distribution

to include more minority group members, or include more examples that invert stereotypes. While

this thesis does not focus on preventing bias against underrepresented minorities, we believe it is an

important motivating case for work on robustness.

1.4.4 Realistic distribution shift

In general, deployed systems must be robust to many kinds of mismatches between the training

data and test inputs. Many of these mismatches occur naturally, when user requests fall outside of

the training distribution. For example, linguistic annotation systems, such as part-of-speech taggers

or syntactic parsers, may be asked by users to annotate text from sources that were not present

in the system's training data. Generalizing to such cases is an important robustness challenge,

although it can sometimes be unclear whether such generalization is possible if the training and test

distributions are too di�erent (Geiger et al., 2019). Work in domain adaptation usually assumes

that some information about the domain of interest is provided, either in the form of a small labeled

dataset or unlabeled data (Blitzer et al., 2006; Daumé III, 2007). In Chapter 6, we will consider

another setting, extreme label imbalance, in which train-test mismatch naturally occurs. We will

explore better methods of data collection, which allows us to circumvent the question of whether

generalization is possible given the original training dataset alone.

Even when systems perform well on user queries on average, rare but catastrophic errors can

lead to serious problems. In 2017, Facebook's machine translation system mistakenly translated an

Arabic Facebook post with the message �Good morning� into a Hebrew phrase that meant �Attack

them� (Berger, 2017). As a result, the Israeli police arrested the man who made the post and

detained him for several hours. The machine translation system was not robust to the uncommon

way the person wrote �Good morning�, leading to very serious consequences. Deployed systems

must avoid egregious errors like wrongly translating non-violent messages into violent ones, even on

CHAPTER 1. INTRODUCTION 9

Robust

encodings

with neural

network

Trained

model

Certifiably

robust

training

Answer

Prediction

Training

data

from

active

learning

Adversarial

distractors

a. Training data

b. Model architecture

c. Training algorithm

d. Test data

Figure 1.1: Work presented in this thesis on improving robustness, overlaid on a schematic depiction
of a standard deep learning pipeline for building NLP systems. In a standard supervised deep
learning setting, training data (a) is used to learn parameters of a model architecture (b) via a
training algorithm (c). This produces a trained model, which can take in test data (d) and output
predicted answers. This thesis presents ways to improve these four components of this pipeline to
yield more robust models. Certi�ably robust training (Chapter 3) trains models to be robust to
adversarial perturbations. Robust encodings (Chapter 4) are a model architecture component that
also increases robustness to adversarial perturbations. Adversarial distracting sentences (Chapter 5)
are one way to generate challenging test data to better evaluate robustness. Finally, active learning
in imbalanced pairwise tasks (Chapter 6) collects training data that improves model generalization.

�worst-case� non-violent messages.

1.5 Building robust NLP systems

We have now seen many di�erent robustness problems, and in particular adversarial robustness

problems. Motivated by these problems, this thesis develops methods for building robust NLP sys-

tems. We focus on adversarial robustness problems in which reasonable systems should be expected

to generalize, yet fail to in practice. Earlier, we noted that adversarially chosen test distributions

that di�er only slightly from the original training distribution can cause precipitous drops in accu-

racy. From the perspective of improving robustness, this closeness between the training and test

distributions gives us some hope that robustness to these adversarial shifts is possible in principle,

if we can �nd the right techniques.

While the robustness problems we consider are diverse, they share a central challenge: in order to

ensure robustness, a system needs some way to compute, approximate, or bound the error incurred

by worst-case inputs selected from a space of possibilities too large to enumerate. Standard neural

NLP models have no way to reason about these worst-case scenarios. In this thesis, we show

CHAPTER 1. INTRODUCTION 10

how to modify various parts of the standard deep learning pipeline to guard against worst-case

inputs, as depicted in Figure 1.1. In the following chapters, we will develop new training algorithms

(Chapter 3), new model architectures (Chapter 4), and new dataset collection methods (Chapter 6),

all of which address the key challenge of guarding against worst-case inputs while operating within

the deep learning framework. In this way, we build robust NLP systems that still leverage and build

on the tremendous progress of the past few years.

1.6 Outline

This thesis will describe four pieces of work that study di�erent aspects of robustness in NLP. In each

case, we will design adversarial tests of robustness that introduce test examples that systems should

be expected to handle. Despite the simplicity of the challenges these tests introduce, state-of-the-art

models will fare poorly. In the �rst half of the thesis, we will focus on robustness to adversarial

perturbations, a setting that allows us to formally de�ne a worst-case robustness goal. We will

develop new training procedures and model architectures that can optimize for these goals. In the

second half, we will examine cases where weaknesses of the dataset creation procedure itself creates

problems. We will develop new strategies for constructing both evaluation and training datasets.

1.6.1 Adversarial perturbations

In Chapter 3 and Chapter 4, we will study robustness to adversarial perturbations. We will build

models that are guaranteed to give the correct prediction when an adversary applies label-preserving

perturbations to words in an input. Guaranteeing correctness is challenging because the adversary

may simultaneously perturb many words in an input, leading to an exponentially large space of total

perturbations. Due to this combinatorial explosion, modifying the training dataset alone does not

ensure robustness, as it is computationally infeasible to include all possible transformations in the

data. Instead, we will either change the training algorithm or the structure of the model to create

models that can provably guarantee robustness to adversarial perturbations.

In Chapter 3, we focus on label-preserving word substitutions, such as lexical paraphrases. We

train models that are provably robust to these word substitutions through a certi�ably robust train-

ing procedure. In particular, we use interval bound propagation (IBP) to minimize a computationally

tractable upper bound on the worst-case loss that any combination of word substitutions can intro-

duce (Dvijotham et al., 2018). IBP had been previously used to guarantee robustness to pixel-level

perturbations in computer vision; our work shows how to extend IBP to discrete input spaces and

to neural network architectures commonly used in NLP, such as recurrent neural networks. This

chapter is based on Jia et al. (2019).

In Chapter 4, we will guard against errors caused by adversarially chosen typos. Instead of

relying on IBP, which makes assumptions about model architecture and scales poorly with network

CHAPTER 1. INTRODUCTION 11

depth, we propose the framework of robust encodings, which confers guaranteed robustness without

imposing any restrictions on model architecture. Central to this framework is the notion of a robust

encoding function. An encoding function is a function that maps text inputs to a discrete set of

encodings. Such a function is robust if it has both high stability�all perturbations (e.g., typos)

of an input map to a small set of encodings�and high �delity�the encodings must retain enough

information about the input to be useful. Given a robust encoding function, we can create an NLP

system that is robust to perturbations by composing it with a normally trained classi�er that uses

the encoding as input. We use an agglomerative clustering algorithm to create a robust encoding

function for typos, and show that the same encoding function can be used to guarantee robustness

to typos across many NLP tasks. This chapter is based on Jones et al. (2020).12

1.6.2 Weaknesses of standard datasets

In Chapter 5 and Chapter 6, we will consider cases in which �aws in data collection lead to datasets

that oversimplify the tasks they are meant to represent. As a result, models trained on these datasets

fare well on test data collected in the same way, but generalize poorly to other types of examples that

are plausible in the context of the broader task and are seemingly not that di�erent from training

examples.

In Chapter 5, we adversarially evaluate reading comprehension systems trained on SQuAD by

inserting distracting sentences into test paragraphs. These distracting sentences have keywords in

common with the question, but do not actually answer the question. By inserting these distracting

sentences, we demonstrate that models trained on SQuAD do not precisely understand the semantics

of these sentences, but instead learn to rely on surface-level similarity to answer questions. This

chapter is based on Jia and Liang (2017), which was the �rst work to demonstrate that neural

reading comprehension systems could be fooled by simple adversarial alterations to inputs.

In Chapter 6, we wrestle with distribution shift inherent to extremely imbalanced pairwise clas-

si�cation tasks like paraphrase detection, in which the vast majority of examples (e.g. 99.99%) are

negatively labeled. Since sampling from this distribution would be highly ine�cient for constructing

a training dataset, this setting forces us to accept a mismatch between training time and test time.

Many recent datasets bypass this problem by heuristically collecting balanced data for both training

and testing. However, models trained on this data often have very low precision on realistically

imbalanced test data. Instead of relying on these heuristics, we use active learning, in particular

uncertainty sampling, to collect balanced training data that enables generalization to imbalanced

test data. To address the computational challenge associated with �nding good examples to label,

we use a pairwise neural embedding model that enables us to use e�cient nearest neighbor search.

This chapter is based on work in submission done jointly with Stephen Mussmann and Percy Liang.

12I am co-second author on Jones et al. (2020). I was a co-mentor to the �rst author Erik Jones, who was an
undergraduate during this project.

Chapter 2

Background

Throughout the history of AI, mismatches between what is anticipated during system development

and what might actually occur have been a source of concern. Expert systems often su�ered from

brittleness, or a lack of robustness. These systems relied on human experts to engineer rules, but

these experts were often unable to anticipate the myriad complications and interactions that could

lead to failure at test time. As machine learning became the dominant strategy for building AI

systems, the burden of anticipating new situations shifted from human experts to data. The promise

of machine learning was that training data provided a much more �exible interface for de�ning system

behavior, compared with human-speci�ed rules. Accordingly, the source of robustness issues also

shifted. The situations anticipated during system design were now the situations presented in the

training data, and the question of robustness became a question of whether systems could generalize

to test examples that were unlike those seen at training time.

In this chapter, we survey work on robustness in natural language processing. We begin by

discussing robustness problems in expert systems. Then, we will turn our attention to various

types of train-test mismatch encountered by machine learning-based NLP systems. We will identify

three broad (and sometimes overlapping) ways that a test distribution can diverge from a training

distribution: example-level perturbations, reweighting, and extrapolation. We will also make note

of the resources available to the system designer at training time, as the extent to which they know

what test-time shifts may occur determines the di�culty of the associated robustness problem.

2.1 Brittleness in expert systems

Expert systems, which emerged in the 1970's and dominated the �eld of AI in the 1980's, were

often criticized as brittle. McCarthy (1984) wrote of expert systems, �[T]hey are di�cult to extend

beyond the scope originally contemplated by their designers, and they usually don't recognize their

own limitations.� Winograd (1991) noted, �It is a commonplace in the �eld to describe expert

12

CHAPTER 2. BACKGROUND 13

systems as brittle�able to operate only within a narrow range of situations. The problem here

is not just one of insu�cient engineering, but is a direct consequence of the nature of rule-based

systems.�

The brittleness of expert systems stems from a few key sources. Winograd discusses three

important �aws inherent to expert systems. First, they are saddled with gaps of anticipation:

domain experts are often unable to anticipate how complex interactions between the rules they

provide could result in unwanted behavior in new situations. Second, expert systems are limited by

the blindness of symbolic representations to world context. Winograd speci�cally discusses the issue

of ambiguity in understanding natural language�a question like �Is the patient eating?� could mean

di�erent things (e.g., whether they are eating at this moment, or whether they have eaten in the

last day) depending on broader context. Fully understanding questions like this requires extensive

world knowledge. Winograd concludes that expert systems thus inevitably su�er from restriction

of the domain: they can only succeed in narrow, simpli�ed domains, due to the limitations of their

representations (Winograd, 1991). McCarthy similarly writes that brittleness stems from expert

systems' lack of common sense knowledge (McCarthy, 1984). This viewpoint has motivated work on

improving commonsense understanding in AI, notably the Cyc project (Lenat et al., 1985). Other

work has also pointed to a lack of probabilistic reasoning as a source of brittleness (Zadeh, 1983).

Given these brittleness problems with expert systems, some researchers began to argue for connec-

tionist approaches based on learning from experience. Winograd (1991) discusses the then-renewed

interest in connectionist approaches or �emergent AI,� which sought to mimic how �cognitive struc-

ture in organisms emerges through learning and experience, not through explicit representation and

programming.� He notes, �The problems of blindness and domain limitation described above need

not apply to a system that has developed through situated experience.� Where hand-crafted rules

fail, connectionist systems could succeed by �lling in the soft reasoning and intuition that is di�cult

to formalize in an expert system. Work on hybrid architectures that combine neural networks with

expert systems exempli�es this optimism (Gallant, 1988; Yahia et al., 2000).

2.2 Robustness in machine learning

The shift in the NLP and broader AI community to learning from data has not eliminated the prob-

lem of robustness. It is true that the dense representations learned by modern deep learning systems

are highly contextualized and seem to capture at least some world knowledge.1 The �exibility of

these representations gives deep learning the potential to handle very complex tasks and domains.

However, a key underlying issue remains: conditions that were not anticipated during system cre-

ation can lead to failures at test time, as machine learning methods are highly dependent on access

to representative training data, as well as inductive biases that enable generalization. The burden

1These representations are however still usually blind to situated world context, as they lack grounding.

CHAPTER 2. BACKGROUND 14

of anticipation has not been overcome, but has shifted to data collection and model architecture

design.

We now make this phrasing more precise. The typical supervised learning setting considers out-

of-sample but in-distribution generalization: the training and test datasets are independent samples

from the same probability distribution. Throughout this chapter, let p(x, y) denote an �original�

data distribution over pairs of examples (x, y), where x ∈ X is an input (e.g., a sentence) and y ∈ Y
is the corresponding correct output (e.g., a classi�cation label). In the standard in-distribution

setting, model parameters θ are trained using a training dataset Dtrain with samples independently

and identically distributed (i.i.d.) from p, then evaluated on their average in-distribution loss:

Lindist(θ) = E
(x,y)∼p

[`(x, y; θ)] , (2.1)

where `(x, y, θ) is the loss (e.g., zero-one loss) of model θ on example (x, y) (lower loss is better).

We also refer to this evaluation metric as standard loss, and accuracy on in-distribution examples

as standard accuracy. Note that this expectation includes individual examples (x, y) that did not

occur in Dtrain, so this does measure out-of-sample generalization, but everything in the expectation

is in-distribution relative to how Dtrain was generated. Robustness issues arise when there is a

mismatch between the training data distribution and test data distribution.

The remainder of this chapter surveys three broad ways that the test distribution can di�er

from the training distribution in the context of NLP tasks. First, individual test examples can

be perturbed by applying random or adversarial transformations that do not change the correct

output y (Section 2.3). Second, the frequency of test examples can be reweighted relative to the

original distribution (Section 2.4). Finally, the test distribution may be much more di�erent from

the training distribution, thus requiring extrapolation (Section 2.5).

2.3 Example-level perturbations

One natural way to alter the test distribution is to slightly perturb samples from the distribution.

In this section, we focus on perturbations that are label-preserving, meaning that the ideal system

should make the same prediction on the original and perturbed versions of an input. For a model that

does well on in-distribution test data, robustness to small perturbations seems a fairly modest goal�

all we are asking now is that the model also stay correct on slightly di�erent examples. However, we

shall see that achieving even this modest goal is often challenging.

We will encounter two broad classes of perturbations in NLP. Some label-preserving operations

arise from natural sources of noise. Users make mistakes while typing, and automatic speech recogni-

tion and optical character recognition systems inevitably make mistakes too. Other label-preserving

perturbations are meaning-preserving operations, such as paraphrasing. Errors on minor meaning-

preserving perturbations indicate a failure to learn the systematic patterns inherent to natural

CHAPTER 2. BACKGROUND 15

language. Such errors also pose a challenge for human interpretability of NLP systems�if a system

gets an example correct, it is natural for a human to assume it will also get very similar examples

correct.

Perturbations may either be chosen randomly or adversarially. A random perturbation setting

is de�ned by a noise distribution q(x′ | x) over perturbations x′ of an input x. For example, x′ could

be x with random typos inserted. A model is evaluated on samples from p that have been randomly

noised:

Lrandperturb(θ) = E
(x,y)∼p

[
E

x′∼q(x′|x)
[`(x′, y, θ)]

]
, (2.2)

Note that if θ is learned using data that is perturbed by q, then this is a standard in-distribution

setting. However, if θ is learned only on data sampled from p, there is a train-test mismatch, albeit

a small mismatch if q only changes examples by a very small amount.

An adversarial perturbation setting is instead de�ned by a neighborhood function N(x) ⊆ X ,
which de�nes a set of nearby points for each x ∈ X . For instance, N(x) might be the set of all strings

x′ that have edit distance ≤ 1 from x, representing the set of all one-character typos of x. Borrowing

terminology from computer security, we also refer N(x) as the attack surface, as it represents the

set of possible actions an adversary can take for any given x. Models are evaluated by �rst sampling

(x, y), then measuring the worst-case loss across all x′ ∈ N(x):

Ladvperturb(θ) = E
(x,y)∼p

[
max

x′∈N(x)
`(x′, y, θ)

]
. (2.3)

Compared to (2.2), we have replaced the inner expectation with a max, which can be thought of as

a loss-maximizing adversary that adapts to the model θ by �nding the perturbation that confuses

this particular model the most. Thus, in order to get credit for an example, the model must predict

correctly on every x′ ∈ N(x). Note that in practice, computing this max is often computationally

intractable, as N(x) is often exponentially large, but this can be approximated with the result of

an optimization procedure. An x′ ∈ N(x) that causes a misclassi�cation is often referred to as an

adversarial example.

2.3.1 Adversarial examples in computer vision

Much of the current work on adversarial examples in NLP draws inspiration from similar work in

computer vision. Here, we describe the phenomenon of adversarial examples as studied in image

classi�cation.

Initial observations. Szegedy et al. (2014) �rst noted the existence of small pixel-level pertur-

bations that could trigger errors in image classi�cation systems. Goodfellow et al. (2015) explored

CHAPTER 2. BACKGROUND 16

+ .007 * =

Panda
58% confidence

Nematode
8% confidence

Gibbon
99% confidence

Figure 2.1: An imperceptible adversarial perturbation in computer vision. The model predicts
the correct class initially, but when an imperceptible pixel-level perturbation is added, it becomes
con�dent in an incorrect class. Note that the perturbation itself is not classi�ed as anything with
high con�dence. Original �gure from Goodfellow et al. (2015).

this phenomenon in greater detail. Speci�cally, they consider an attack surface in which each pixel

of an image may be changed by a very small amount ε. Formally, this is an adversarial perturbation

setting where the input x ∈ Rd is a d-dimensional vector representing the pixel values of an image,

and N(x) = {x′ : ‖x′ − x‖∞ ≤ ε} for some small ε > 0. Here, ‖x′ − x‖∞
def
= maxi |x′i − xi| is the L∞

norm, and this N(x) is also known as the L∞ ball of radius ε around x.

Computing (2.3) requires maximizing `(x′, y; θ) with respect to x′, subject to the constraint that

‖x′−x‖∞ ≤ ε. For neural network models, this is a non-convex optimization problem that does not

admit an e�cient solution. Goodfellow et al. (2015) propose approximating this maximum using

the fast gradient sign method (FGSM), in which an approximate worst-case input x′ is computed by

either adding or subtracting ε to each coordinate in x, determined by whether the gradient of the

loss through the i-th coordinate of x is positive or negative. Formally, FGSM uses the approximation

arg max
x′∈N(x)

`(x′, y; θ) ≈ x+ ε · sign(∇x`(x, y; θ)). (2.4)

Despite the simplicity of FGSM, Goodfellow et al. (2015) �nd that it can consistently fool models

with perturbations that are so small that they are imperceptible to humans, as shown in Figure 2.1.

Defenses. The widespread susceptibility of models to adversarial examples led to a �urry of sub-

sequent work trying to train models that could not be fooled by these imperceptible pixel-level

perturbations. Goodfellow et al. (2015) proposed an adversarial training algorithm in which ex-

amples generated by the fast gradient sign method are computed on the �y for the current model

parameters, and the model is trained on these examples in addition to unperturbed examples. More

CHAPTER 2. BACKGROUND 17

precisely, given a training example (x, y), adversarial training takes a gradient step on θ to minimize

α · `(x, y; θ) + (1− α) · `(x+ ε · sign(∇x`(x, y; θ)), y; θ) (2.5)

where α ∈ [0, 1] is a hyperparameter. While many variants on adversarial training have been

proposed, Athalye et al. (2018) showed that many fail to actually guarantee robustness to all x′ ∈
N(x). In particular, many proposed defenses rely on obfuscated gradients�making the gradient

of the loss with respect to x uninformative�which stops simple gradient-based adversaries but does

not actually make the model correct on all x′ ∈ N(x), as is demanded by (2.3).

In response, Raghunathan et al. (2018) and Wong and Kolter (2018) developed certi�ed defenses,

which can guarantee correctness on all allowed perturbations of some examples. For some examples

(x, y), a certi�ed defense can produce a certi�cate, or formal proof, that no perturbation x′ ∈ N(x) is

misclassi�ed by the model. Note that there may be many other (x, y) for which a certi�cate cannot

be constructed, even if the model is actually correct on all x′ ∈ N(x). Thus, certi�ed accuracy�

the fraction of test examples for which a certi�cate can be produced�may be an underestimate

of accuracy on actual perturbed examples. In practice, certi�ed defense methods can �nd model

parameters such that certi�ed accuracy is reasonably high and the gap between certi�ed accuracy

and accuracy on actual perturbations is not too large. Unfortunately, these works were restricted to

networks of very constrained architecture and size. Subsequent work on interval bound propagation

(IBP) from Dvijotham et al. (2018) and Gowal et al. (2019) showed how to construct certi�ed

defenses for much more general classes of neural networks.

A parallel line of work has made adversarial training more e�ective by using projected gradient

descent (PGD) to search for a high-loss input x′ starting from a randomly chosen point in N(x),

as proposed by Madry et al. (2018). This randomization bypasses issues with obfuscated gradients,

and empirically leads to models that are robust even when a more expensive search algorithm is run

at test time to �nd high-loss points in N(x). We note that PGD assumes there is an e�cient way to

project a point onto the nearest point in N(x), which is straightforward for simple norm-constrained

perturbations but less so for attack surfaces with more complex geometry.

Both certi�ed defenses and adversarial training share the same drawback: increasing robustness

to adversarial perturbations tends to decrease standard accuracy. Some work has attempted to

explain this trade-o� theoretically (Zhang et al., 2019b), but in principle it is not clear that robustness

and accuracy must be at odds. A recent line of work has shown how to improve this trade-o� by

using unlabeled data (Carmon et al., 2019; Uesato et al., 2019; Naja� et al., 2019; Raghunathan

et al., 2020).

Beyond L∞ perturbations. Finally, recent work has cast more attention on perturbations be-

yond L∞ perturbations. The ImageNet-C benchmark (Hendrycks and Dietterich, 2019) tests

robustness to a wide range of random perturbations, such as JPEG compression, motion blur, and

CHAPTER 2. BACKGROUND 18

changes in brightness and contrast. Models are explicitly prohibited from training on these corrup-

tions, in order to benchmark the ability of models to generalize to these slight alterations to natural

images. Kang et al. (2019) evaluate whether models trained to be robust to one type of pertur-

bation can generalize to other perturbations. They consider both Lp norm-constrained adversarial

perturbations for various values of p, as well as various types of random noise.

2.3.2 Spam classi�cation

In NLP, adversarial attacks on classi�ers were studied long before the work of Szegedy et al. (2014).

Notably, spam classi�ers must guard against real-world adversaries who attempt to evade detection

by changing the e-mails they send. Some methods attempt to undo these changes via preprocessing.

Lee and Ng (2005) study spam deobfuscation, the task of converting obfuscated text used by spam-

mers (e.g., replacing words like �re�nance� with �r.e�na.nce� or �re xe �nance�) back into normal

text. Chapter 4 will present a related approach.

Other work directly makes classi�ers more robust to spammers' obfuscation attempts, focusing

on linear models. Dalvi et al. (2004) analyze optimal strategies for a Naive Bayes spam classi�er

and adversary. They consider various adversarial strategies, including adding irrelevant words and

replacing words with synonyms. Globerson and Roweis (2006) defend against adversarial feature

deletion, which may occur when spammers realize they should avoid certain words. Their work trains

support vector machines that are optimally robust to the adversarial removal of certain features.

Lowd and Meek (2005) present an e�cient attack by which an adversary can reverse-engineer the

weights of a linear classi�er, in order to then generate inputs that can evade detection. Overall, while

the problems studied in these works are closely related to recent work on robustness, the methods

are quite di�erent due to the focus on linear classi�ers. The minimax games that arise in adversarial

settings are often easier to analyze by assuming models are linear. Goodfellow et al. (2015) too note

that linear image classi�cation models are susceptible to adversarial examples, and that adversarial

training for linear models corresponds to a form of regularization that can be written in closed form.

With the success of deep learning, work on adversarial robustness has shifted to defenses that can

accommodate more general model families.

2.3.3 Adversarial perturbations and neural NLP

Chapter 3, Chapter 4, and (to some extent) Chapter 5 will cover my work studying the robust-

ness of deep learning NLP models to adversarial perturbations. Chapter 5 describes Jia and Liang

(2017), the �rst work that evaluated neural question answering systems on adversarial examples,

and Chapter 3 describes Jia et al. (2019), the �rst work that built neural NLP models with guar-

anteed robustness to an exponentially large space of adversarial perturbations. We therefore leave

more detailed discussion of this topic to these chapters, but devote some space here to surveying

contemporaneous work on this topic.

CHAPTER 2. BACKGROUND 19

Semantic perturbations. One prominent line of work focuses on small perturbations that pre-

serve meaning. Analogously to norm-constrained attack surfaces in computer vision, multiple NLP

papers de�ne concrete attack surfaces N(x) for natural language tasks in which words are replaced

with other words that have similar meanings (Alzantot et al., 2018; Jin et al., 2020). Ribeiro et al.

(2018) use automatic paraphrase generation tools to identify Semantically Equivalent Adversarial

Rules (SEARs), or local rewrite rules that induce errors across many examples. For example, simply

replacing �?� with �??� in examples from the SQuAD development set led to 202 more errors by a

then-state-of-the-art model; this alone increased the overall error rate by 3%. Other simple opera-

tions that triggered errors included replacing �What is� with �What's� and replacing �What� with

�Which�. Iyyer et al. (2018) craft adversarial examples by applying syntactic paraphrase operations,

rather than relying on lexical substitution. For example, a model tested in the paper correctly as-

signed negative sentiment to the sentence �[T]here is no pleasure in watching a child su�er,� but

erroneously assigned positive sentiment to �[I]n watching the child su�er, there is no pleasure.�

Typos. Another major line of work focuses on typos (Belinkov and Bisk, 2018; Ebrahimi et al.,

2018a; Edizel et al., 2019). Typos represent an important practical robustness problem: they are

common in naturally occurring text and can be easily generated by adversaries, and often do not

a�ect human readability, but models tend to be very sensitive to them. Hosseini et al. (2017) showed

that Google's Perspective API, a service that was supposed to detect hateful speech online, could be

fooled by inserting typos (e.g., replacing �idiot� with �idiiot�) and other simple alterations that leave

the message easily understandable by humans. Pruthi et al. (2019) studied the robustness of various

state-of-the-art models to typos. Despite its impressive standard accuracy on many datasets, BERT

is extremely sensitive to typos: a BERT model that achieves 90.3% accuracy on a sentiment analysis

dataset can drop all the way to 45.8% when an adversary is allowed to insert a single one-character

typo in the input, and 24.6% with two typos. They also show that using a typo-corrector can help

defend against typos but still leaves a signi�cant gap with original accuracy; on the aforementioned

sentiment analysis dataset, the best typo corrector only brings BERT back to 75.0% accuracy with

one typo and 68.0% accuracy with two typos.

2.4 Reweighting and subgroups

Adversarial perturbations modify each test example slightly, but do not alter the underlying distri-

bution p from which original examples are sampled. An orthogonal way in which test distributions

can shift is by reweighting the original distribution. Reweighting emphasizes accuracy on certain

subsets of examples that occur in p(x, y), as high average accuracy can hide poor accuracy on subsets

of interest. In general, a reweighted distribution q(x, y) for an original distribution p(x, y) satis�es

the property that q(x, y) > 0 only if p(x, y) > 0. In other words, q only puts probability mass on

CHAPTER 2. BACKGROUND 20

pairs that have support (i.e., are possible) on p. A model is trained on data sampled from p but

evaluated on data sampled from q:

Lreweight(θ) = E
(x,y)∼q(x,y)

[`(x, y; θ)] . (2.6)

A particular type of reweighted distribution is a subgroup distribution. Let g : X × Y → {0, 1}
be a group membership function denoting whether an example (x, y) is in a particular group.2 For

example g(x, y) could be 1 if x comes from a particular minority group and 0 otherwise. The loss

on the subgroup de�ned by g is

Lsubgroup(θ) = E
(x,y)∼p(x,y|g(x,y)=1)

[`(x, y; θ)] . (2.7)

In other words, models are tested on the subset of examples from the original distribution that

belong to a particular group. Within this group, no reweighting is done, so relative proportions

within the group are preserved.

2.4.1 Bias against underrepresented groups

An important reason to care about reweighted test distributions is that the natural data distribu-

tion often underrepresents certain populations of individuals. Therefore, models may achieve high

average accuracy on the original distribution without adequately modeling these underrepresented

groups. Blodgett et al. (2016) showed that African American English (AAE) sentences are more

often misclassi�ed as non-English by language identi�cation systems, and more often parsed incor-

rectly by syntactic parsers, compared to white-aligned sentences. Sap et al. (2019) further showed

that AAE Tweets are more likely to be classi�ed as hate speech. These �ndings echo results in com-

puter vision, which �nds that deployed face recognition systems have higher error rates on darker

faces compared to lighter faces, and higher error rates on female faces compared to male faces (Buo-

lamwini and Gebru, 2018). To diagnose these failures, it is important to evaluate systems on subsets

of examples from these underrepresented groups.

Models also learn to reproduce stereotypes about certain demographic groups. For example,

coreference resolution systems often propagate gender biases (Zhao et al., 2018; Rudinger et al.,

2018). Rudinger et al. (2018) give the example of the sentence �The surgeon couldn't operate on his

patient: it was his son!� The Stanford CoreNLP coreference resolution system correctly predicts that

both occurrences of �his� are coreferent with �The surgeon.� However, given the same sentence with

�her� instead of �him,� the system fails to make this same prediction. It seems that the system has

learned the stereotype that surgeons are more likely to be men than women. Troublingly, Zhao et al.

(2017) show that systems trained on biased data tend to amplify this bias. They train a system on

2In most cases, g is purely a function of x, but for generality we allow it to depend on both x and y.

CHAPTER 2. BACKGROUND 21

visual semantic role labeling, in which a system is given an image and must predict various attributes

about it, including what action is depicted and the gender of the person performing the action. In

the training data, only 33% of cooking images feature a man, demonstrating a bias towards women

cooking. When a system trained on this data makes predictions, it predicts that the person is male

in only 16% of images that it predicts involve cooking, thus further amplifying this bias. Zhao

et al. (2017) also propose ways to avoid bias ampli�cation by re-calibrating a trained model. When

models learn stereotypes, they are essentially performing poorly on the subgroups of people who do

not follow these stereotypes (e.g., female surgeons or male cooks). Thus, we can also view these

problems as one case of generalization to a minority groups.

2.4.2 Analysis of challenging subsets

Evaluating on subgroups also can serve as an analysis tool to probe whether models have learned

a particular skill. Rimell et al. (2009) show that dependency parsers that seem very accurate

by standard metrics perform poorly on a subset of the test data that has unbounded dependency

constructions. The LAMBADA dataset (Paperno et al., 2016) consists of sentences for which humans

are unable to predict the last word given the sentence alone, but can predict the last word given

more document context. Evaluating language models on this subset of examples tests the ability of

language models to track relevant information across sentence boundaries. Linzen et al. (2016) use

number agreement to determine whether language models can correctly process long-range syntactic

dependencies. They isolate sentences that have �distractor� nouns between the subject and verb,

such as �The keys to the cabinet are on the table.� To correctly predict �are� instead of �is,� the

model must realize that the subject is the plural �keys� and not the singular �cabinet�.

This strategy of identifying challenging subsets works well when data is abundant, in particular

for language modeling. However, when there is a smaller pool of available test examples, there

may be too few examples from interesting subgroups to conduct a meaningful evaluation. In such

settings, perturbing examples can introduce additional challenges while still leveraging prior data

collection e�orts.

2.4.3 Distributionally robust optimization

Distributionally robust optimization (DRO) is a framework for generalizing to worst-case distribution

shifts (Ben-Tal et al., 2013; Duchi and Namkoong, 2018). Let F denote a set of possible data

distributions. The corresponding DRO loss is:

LDRO(θ) = max
q∈F

E
(x,y)∼q

[`(x, y; θ)] . (2.8)

In other words, the DRO objective tracks the loss on the worst-case distribution in F . In many

cases, F is restricted to contain distributions that are reweighted versions of p (Duchi et al., 2019),

CHAPTER 2. BACKGROUND 22

though this is not a requirement.3

In NLP, the most commonly seen variant of DRO is group DRO (Hu et al., 2018b; Oren et al.,

2019), which is the worst-case version of a subgroup distribution. Let g be a function from X × Y
to {1, . . . ,K} for some integer K. g partitions the set of all possible examples into K subgroups.

The group DRO loss measures the worst-case loss across all K subgroups:

LgroupDRO(θ) = max
1≤k≤K

E
(x,y)∼p(x,y|g(x,y)=k)

[`(x, y; θ)] . (2.9)

This objective has a natural interpretation in terms of combating bias against underrepresented

groups: the model must perform well for each group in isolation. Oren et al. (2019) apply group

DRO to language modeling, where the groups are de�ned by a topic model. Encouraging uniformly

good loss across these di�erent topics helps the language model generalize better to new domains.

Sagawa et al. (2020) show that group DRO can be used to limit overreliance on spurious correlations,

such as the fact that negation words are often spuriously indicative of contradictions in natural

language inference datasets.

2.5 Extrapolation

Finally, we discuss extrapolation settings, which we use as a catch-all term for settings in which

the test distribution diverges from the original distribution in a way that goes beyond example-

level perturbations or reweighting. Extrapolation settings involve test examples that tend to di�er

signi�cantly in some way from any of the examples seen at training time. As a result, success in

extrapolation settings is in general more challenging.

2.5.1 Domain adaptation and domain generalization

Domain adaptation. In many NLP applications, training data is available for one or a handful

of �source� domains, but useful systems should generalize to other �target� domains as well. A

sentiment analysis system may only be trained on certain product categories but would ideally

generalize to other products; a part-of-speech tagger may be trained on newswire but would ideally

generalize to conversational speech, blogs, or research articles. Domain adaptation studies how to

generalize well to one domain when having access mostly to data in another. Here, we focus on

domain adaptation under the covariate shift assumption, in which P (y | x) is identical for the

source and target domains. This guarantees that the same mapping from X to Y is optimal for both

domains. Covariate shift is implicit in many tests of robustness; for instance, when de�ning a family

3 In fact, note that the problem of robustness to adversarial example-level perturbations can be written as a DRO
problem. Let A denote the set of functions a : X → X such that a(x) ∈ N(x) for all x ∈ X . Each a ∈ A induces a
data distribution de�ned by sampling (x, y) ∼ p(x, y), then returning (a(x), y). The DRO objective using this set of
distributions is precisely the adversarial example objective from (2.3). Also see Volpi et al. (2018), which shows that
DRO using Wasserstein distance-constrained balls results in training on adversarially perturbed examples.

CHAPTER 2. BACKGROUND 23

of example-level perturbations, it is important to ensure that the perturbations do in fact preserve

the correct label, or else there would be a di�erence in P (y | x) between the original distribution

and the distribution with perturbations.

Since source and target domains could be very di�erent, domain adaptation techniques typically

assume access to some information about the target domain. In the common semi-supervised setting,

the system designer has unlabeled examples (x's only, not y's) from the target domain in addition

to labeled examples (both x's and y's) from the source domain. In this setting, one standard idea

is to treat the problem as a special case of reweighting (Gretton et al., 2008). The source training

data is reweighted so that the distribution over x more closely resembles that of the unlabeled target

data, and a classi�er is then trained on this reweighted data. Naturally, this method works well if

the target domain mostly involves similar inputs as the source domain, just in di�erent proportions.

Another line of work attempts to build domain-independent representations to enable better

cross-domain generalization. Blitzer et al. (2006) propose structural correspondence learning, which

uses co-occurrence statistics to link domain-speci�c features with �pivot features,� features that

appear in the source and target domains and provide similar information about the correct label in

both. Through this alignment, patterns learned based on pivot features in the source domain can

be ported over to target domain-speci�c features, even though these features did not occur in the

model's labeled training data. More recent work on adversarial domain adaptation shares this same

high-level goal of learning domain-independent representations; we discuss these methods, and the

comparison with adversarial examples, in Section 2.6.2.

An alternative to the semi-supervised setting is the fully supervised setting, in which a large

amount of labeled source data and small amount of labeled target data are available. The key

question is how to combine these two data sources to do better than training on either one alone. One

surprisingly simple and successful method was proposed by Daumé III (2007). This �frustratingly

easy� method simply creates three copies of each feature: one copy �res only on source data, one

on target data, and one on both. The copy that �res on both can be used to share domain-general

patterns, while the domain-speci�c copies can be used to additionally learn domain-speci�c patterns.

Domain generalization. Related to domain adaptation is the more ambitious goal of domain

generalization, in which a system is expected to generalize across domains without any foreknowledge

of the target domain. Levy et al. (2017) propose a reading comprehension benchmark based on

zero-shot relation extraction, in which systems must generalize to new relation types (described

by natural language questions) at test time. Due to the proliferation of reading comprehension

question answering datasets, recent work has studied how to generalize from one such dataset to

another (Yogatama et al., 2019; Talmor and Berant, 2019). While it is not always clear that such

generalization is possible, since di�erent datasets involve di�erent types of documents and styles of

questions, empirical results indicate that models transfer somewhat reasonably when trained on a

mixture of data from multiple datasets (Talmor and Berant, 2019; Fisch et al., 2019).

CHAPTER 2. BACKGROUND 24

2.5.2 Stress tests

Stress tests are datasets with new test examples designed to test a particular skill. Unlike test

datasets generated by identifying challenging subsets, stress tests do not come from the original data

distribution, although failure on a stress test is usually more noteworthy if the types of sentences

involved do not di�er too much from those used to train the model. The format of natural language

inference (NLI) has been particularly popular for developing stress tests, as it is easy to pose many

tests of language understanding as NLI problems. Glockner et al. (2018) show that models trained

on standard NLI datasets often cannot make simple lexical inferences. For example, it is easy to see

that �The man is holding a saxophone� contradicts �The man is holding an electric guitar� because

these are two di�erent instruments, but models often fail at these sorts of examples, as high word

overlap between two sentences tends to be correlated with entailment between them. McCoy et al.

(2019) study other heuristics that NLI models might employ. For example, it seems natural to

assume that a sentence entails all contiguous subsequences contained within it, but �The doctor near

the actor danced� does not entail �The actor danced.� They construct test examples that contain

counterexamples for three such heuristics, and �nd that state-of-the-art NLI models generalize very

poorly to these test examples. Naik et al. (2018) present a diverse set of stress tests for NLI.

Overall, these stress tests provide strong evidence that models have not really grasped the un-

derlying task of NLI, and instead rely heavily on shallow heuristics. Human-designed stress tests

particularly excel at identifying interpretable failure modes. At the same time, it is often unclear

how to build models that can generalize well to these stress tests. It is of course possible to add

stress test-like examples to the training data, but this is unlikely to help with the next generation

of stress tests, leading to a game of �whack-a-mole.� The broader challenge is to understand how to

build models that succeed on these tests while having as little knowledge as possible about what the

test data actually contains. Some recent progress on this front has come from learning to correct

for biases in data that make training datasets too easy (Clark et al., 2019a; He et al., 2019).

2.5.3 Unnatural inputs

Finally, machine learning systems may produce highly unexpected outputs when given unnatural

inputs. Google Translate has been known to produce strange, biblical sounding �translations� when

given nonsensical inputs, such as the same word repeated many times (Christian, 2018).4 Wallace

et al. (2019a) showed the existence of Universal Adversarial Triggers, or short nonsense sequences

that reliably trigger undesirable behavior when concatenated with a normal input. For example,

prepending �zoning tapping �ennes� to a movie review reliably changed a model's prediction from

positive to negative. In some sense, these adversarial triggers can be viewed as adversarial perturba-

tions, as they require inserting only a small number of tokens. However, triggers make no attempt

4See also https://www.reddit.com/r/TranslateGate/, a subreddit dedicated to these errors.

https://www.reddit.com/r/TranslateGate/

CHAPTER 2. BACKGROUND 25

to appear natural, whereas adversarial perturbations usually are chosen to look like plausible in-

puts. Feng et al. (2018) showed that models often make con�dent predictions even when many input

words are deleted to the point that a human can no longer tell what the correct answer should be. In

these extreme cases, it may sometimes be unclear what the �correct� output should be, but ideally

a system would at least recognize these abnormal situations as outliers.

2.6 Other adversarial and robust methods

In the AI community in recent years, the words �adversarial� and �robust� have come to mean

di�erent things in di�erent contexts. In this section, we brie�y contrast work on robustness to

train-test mismatch and adversarial examples with other methods that also use these terms. This

thesis focuses on settings where adversaries choose or generate test examples, but other work uses

adversarial actors for di�erent goals and considers robustness to other assumptions.

2.6.1 Generative adversarial networks

Generative adversarial networks (GANs) are a popular method for training generative models (Good-

fellow et al., 2014; Bowman et al., 2016; Li et al., 2017). The intuition behind GANs is that if a

strong classi�er cannot distinguish outputs of a generative model from real samples (e.g., human-

written sentences), then the generative model must be good at producing realistic outputs. In GAN

training, a generative model is thus trained to maximize the loss of a discriminative binary classi�er

that is trained to distinguish generated outputs from real outputs. The GAN setting bears some

similarities to the adversarial perturbation setting. In both, an adversary (either the GAN genera-

tor or an adversary that perturbs examples) seeks to maximize the loss of a classi�er by generating

particular types of examples. However, the GAN objective involves the task of discriminating real

from synthetic outputs, which itself is not the actual task of interest. This objective is merely used

as a way to train the generative model. In contrast, when studying adversarial perturbations, the

discriminative model does in fact directly perform the task of interest. The adversarial example

�generator� is an instrument for testing and training this model. There is however an interest-

ing connection between GANs and adversarial perturbations: Robey et al. (2020) use the latent

space learned by a GAN generator to de�ne possible perturbations of an image, and argue that this

provides a more natural range of image variation compared to norm-constrained perturbations.

2.6.2 Domain-adversarial training

In other settings, an adversarial loss is used to ensure that some property of the input is not captured

by a learned representation. In domain-adversarial training or adversarial domain adaptation, the

goal is to learn a representation that is both useful for a task and independent of the domain of

CHAPTER 2. BACKGROUND 26

the input, as such a representation enables better generalization across domains (Ganin et al., 2016;

Zhang et al., 2017b). In a standard domain adaptation setting with labeled source data and unlabeled

target data, this can be achieved by training a model to both predict correctly on source data and

thwart a classi�er that looks at the model's internal representations and tries to predict whether

the input came from the source or target domain. This method shares much more in common with

GANs than with work on adversarial examples. As with GANs, the model of interest here is a

loss-maximizing adversary to the domain classi�er, which is merely an instrument to improve the

original model's training. Moreover, the success of domain-adversarial training depends on the loss-

maximizing adversary succeeding, as this would mean that it has truly learned a domain-independent

representation. Closely related ideas are also used in text style transfer, in which representations of

text are constructed so as to be independent of the original style (Shen et al., 2017b).

2.6.3 Robust statistics and data poisoning

Robust statistics is a �eld of statistics concerned with estimating quantities from data when the data

deviates in distribution from its assumed distribution. A classic problem in robust statistics is how to

estimate parameters of a distribution when data drawn from this distribution is contaminated with

a small number of outliers (Tukey, 1960; Huber, 1964). In machine learning, work on data poisoning

similarly studies how to estimate model parameters from training data containing adversarially

chosen outliers (Biggio et al., 2012; Steinhardt et al., 2017). The focus of these works is on robustness

to the violation of a di�erent assumption, namely the assumption that the available data from which

parameters are to be estimated (i.e., the training data, in machine learning) consists of i.i.d. draws

from the distribution of interest. In this thesis, we do not consider settings in which the training

data has been perturbed, and instead focus on perturbations and other shifts applied to the test

data.

2.6.4 Improving standard accuracy

While work in computer vision has consistently found a trade-o� between robustness to adversarial

perturbations and standard accuracy, work in NLP has found that some adversarial training proce-

dures can improve standard accuracy (Miyato et al., 2017; Zhu et al., 2020). Miyato et al. (2017)

showed that adversarial training using norm-constrained perturbations of word vectors can improve

standard accuracy. Unlike the adversarial perturbations we described earlier, in which each pertur-

bation x′ corresponds to a possible input in X , perturbing word vectors directly creates vectors that

do not correspond to any real sequence of words. The bene�t of adversarial training here is not to

defend against any actual adversarially-crafted inputs, but to regularize the model towards being less

sensitive to small di�erences in word vectors, which seems to lead to better standard generalization.

Chapter 3

Certi�ably Robust Training

We start by building NLP systems that are robust to adversarial meaning-preserving perturbations.

As discussed in Chapter 1, robustness to such perturbations is tied to the broader issue of system-

aticity in NLP models. Neural NLP models are not innately constrained to generalize systematically,

while human language understanding is built on the ability to systematically reuse known vocabu-

lary items in new situations. A neural model may fail to understand a word in context, even if it has

seen this word before in very similar contexts. This alone is not necessarily a fatal �aw with neural

NLP, but some aspect of the way we build neural NLP systems must be responsible for learning the

crisp regularities of natural language.

In this chapter, we study a simple setting that is nonetheless challenging enough to expose these

generalization failures. In this setting, an attacker may replace every word in the input with a similar

word (that ought not to change the label), leading to an exponentially large number of possible

perturbations. Figure 3.1 shows an example of these word substitutions. Prior work of Alzantot

et al. (2018) and others demonstrated that simply replacing input words with other similar, common

words can often trigger mistakes by neural models on standard NLP tasks. In fact, for most test

inputs, an adversary can �nd some choice of word substitutions that preserves the meaning of the

original sentence but causes the model's prediction to change. For example, our baseline model

correctly classi�es a review containing the phrase �I've �nally found a movie worse than . . . � as

negative, but replacing �found� with �discovered� �ips its prediction to positive. Other adversarial

examples require applying similar word substitutions to several words simultaneously.

Word-for-word substitutions clearly account for only some of the systematicity failures that

plague neural models�invariance to such substitutions is necessary but clearly not su�cient for

systematic understanding. Nonetheless, we �nd this setting instructive for the purpose of method

development, as defending against adversarial word substitutions alone is already a challenging

problem. In particular, word substitutions already force us to grapple with the combinatorial nature

of language productivity. Since each word in a sentence could be paraphrased in multiple ways,

27

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 28

… made one of the

made

accomplished

delivered

one of the

best

better

finest

nicest

good

films…

films

movies

film

cinema

x1 x2 x3 x4 x5

x̃1 x̃2 x̃3 x̃4 x̃5

best
x6

x̃6

S(x, 1)

S(x, 2) S(x, 3) S(x, 4)

S(x, 5)
S(x, 6)

Input reviewaaa x

Substitution words

…delivered one of the movies…better
Perturbed reviewaaa

PositiveCNN

NegativeCNN

x̃

Figure 3.1: Word substitution perturbations in sentiment analysis. For an input x, we consider
perturbations x̃, in which every word xi can be replaced with any similar word from the set S(x, i),
without changing the original sentiment. Models can be easily fooled by adversarially chosen per-
turbations (e.g., changing �best� to �better�, �made� to �delivered�, ��lms� to �movies�), but the ideal
model would be robust to all combinations of word substitutions.

a model can only be robust to worst-case word substitutions if it can somehow reason about this

combinatorially large space. Existing methods that use heuristic search (Ebrahimi et al., 2018b;

Alzantot et al., 2018) are slow and cannot provide guarantees of robustness, since the space of

possible perturbations is too large to search exhaustively.

Instead of enumerating the combinatorially many perturbations for each input, we obtain guar-

antees of robustness by leveraging interval bound propagation (IBP), a technique that was previously

applied to feedforward networks and CNNs in computer vision (Dvijotham et al., 2018). IBP ef-

�ciently computes a tractable upper bound on the loss of the worst-case perturbation. When this

upper bound on the worst-case loss is small, the model is guaranteed to be robust to all perturba-

tions, providing a certi�cate of robustness. To apply IBP to NLP settings, we derive new interval

bound formulas for multiplication and softmax layers, which enable us to compute IBP bounds for

LSTMs (Hochreiter and Schmidhuber, 1997) and attention layers (Bahdanau et al., 2015). We also

extend IBP to handle discrete perturbation sets, rather than the continuous ones used in vision.

IBP not only provides a way to certify correctness at test time, but also a better way to train

models. Other methods for training robust models struggle in our word substitution setting. Data

augmentation can sometimes mitigate the e�ect of adversarial examples (Jia and Liang, 2017; Be-

linkov and Bisk, 2018; Ribeiro et al., 2018; Liu et al., 2019a), but it is insu�cient when considering

worst-case perturbations from a very large perturbation space (Alzantot et al., 2018). Adversarial

training strategies from computer vision (Madry et al., 2018) rely on gradient information, and

therefore do not extend to the discrete perturbations seen in NLP. We instead use certi�ably robust

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 29

training, in which we train models to optimize the IBP upper bound (Dvijotham et al., 2018).

We evaluate certi�ably robust training on two tasks�sentiment analysis on the IMDB dataset

(Maas et al., 2011) and natural language inference on the SNLI dataset (Bowman et al., 2015).

Across various model architectures (bag-of-words, CNN, LSTM, and attention-based), certi�ably

robust training consistently yields models which are provably robust to all perturbations on a large

fraction of test examples. A normally-trained model has only 8% and 41% accuracy on IMDB and

SNLI, respectively, when evaluated on adversarially perturbed test examples. With certi�ably robust

training, we achieve 75% adversarial accuracy for both IMDB and SNLI. Data augmentation fares

much worse than certi�ably robust training, with adversarial accuracies falling to 35% and 71%,

respectively.

3.1 Setup

We consider tasks where a model must predict a label y ∈ Y given textual input x ∈ X . For example,

for sentiment analysis, the input x is a sequence of words x1, x2, . . . , xL, and the goal is to assign a

label y ∈ {−1, 1} denoting negative or positive sentiment, respectively. We use z = (x, y) to denote

an example with input x and label y, and use θ to denote parameters of a model. Let f(z, θ) ∈ R
denote some loss of a model with parameters θ on example z. We evaluate models on f0-1(z, θ), the

zero-one loss under model θ.

3.1.1 Perturbations by word substitutions

Our goal is to build models that are robust to label-preserving perturbations. In this chapter, we

focus on perturbations where words of the input are substituted with similar words. Formally, for

every word xi (e.g., �made�), we consider a set of allowed substitution words S(x, i), including xi

itself (e.g., {�made�, �accomplished�, �delivered�}). We use x̃ to denote a perturbed version of x,

where each word x̃i is in S(x, i). For an example z = (x, y), let Bperturb(z) denote the set of all

allowed perturbations of z:

Bperturb(z) = {(x̃, y) : x̃i ∈ S(x, i) ∀i}. (3.1)

Figure 3.1 provides an illustration of word substitution perturbations. We choose S(x, i) so that x̃

is likely to be grammatical and have the same label as x (see Section 3.4.1).

3.1.2 Robustness to all perturbations

Let F(z, θ) denote the set of losses of the network on the set of perturbed examples de�ned in (3.1):

F(z, θ) = {f(z̃, θ) : z̃ ∈ Bperturb(z)}. (3.2)

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 30

We de�ne the robust loss as maxF(z, θ), the loss due to worst-case perturbation. A model is

robust at z if it classi�es all inputs in the perturbation set correctly, i.e., the robust zero-one loss

maxF0-1(z, θ) = 0. Unfortunately, the robust loss is often intractable to compute, as each word can

be perturbed independently. For example, reviews in the IMDB dataset (Maas et al., 2011) have a

median of 1031 possible perturbations and max of 10271, far too many to enumerate. We instead

propose a tractable upper bound by constructing a set O(z, θ) ⊇ F(z, θ). Note that

maxO0-1(z, θ) = 0⇒ maxF0-1(z, θ) = 0

⇔ robust at z. (3.3)

Therefore, whenever maxO0-1(z, θ) = 0, this fact is su�cient to certify robustness to all perturbed

examples Bperturb(z). However, since O0-1(z, θ) ⊇ F0-1(z, θ), the model could be robust even if

maxO0-1(z, θ) 6= 0.

3.2 Certi�cation via interval bound propagation

We now show how to use interval bound propagation (IBP) (Dvijotham et al., 2018) to obtain a

superset O(z, θ) of the losses of perturbed inputs F(z, θ), given z, θ, and Bperturb(z). For notational

convenience, we drop z and θ. The key idea is to compute upper and lower bounds on the activations

in each layer of the network, in terms of bounds computed for previous layers. These bounds

propagate through the network, as in a standard forward pass, until we obtain bounds on the �nal

output, i.e., the loss f . While IBP bounds may be loose in general, Section 3.4.2 shows that training

networks to minimize the upper bound on f makes these bounds much tighter (Gowal et al., 2019;

Raghunathan et al., 2018). Figure 3.2 provides an overview of how IBP can be used to certify

robustness.

Formally, let gi denote a scalar-valued function of z and θ (e.g., a single activation in one layer of

the network) computed at node i of the computation graph for a given network. Let dep(i) be the

set of nodes used to compute gi in the computation graph (e.g., activations of the previous layer).

Let Gi denote the set of possible values of gi across all examples in Bperturb(z). We construct an

interval Oi = [`i, ui] that contains all these possible values of gi, i.e., Oi ⊇ Gi. Oi is computed from

the intervals Odep(i) = {Oj : j ∈ dep(i)} of the dependencies of gi. Once computed, Oi can then be

used to compute intervals on nodes that depend on i. In this way, bounds propagate through the

entire computation graph in an e�cient forward pass.

We now discuss how to compute interval bounds for NLP models and word substitution perturba-

tions. We obtain interval bounds for model inputs given Bperturb(z) (Section 3.2.1), then show how

to compute Oi from Odep(i) for elementary operations used in standard NLP models (Section 3.2.2).

Finally, we use these bounds to certify robustness of model predictions (Section 3.2.3) and train

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 31

𝑥(1) = 𝜙(amazing) ℎ = 𝐴 ∗ 𝑐𝑜𝑛𝑐𝑎𝑡(𝑥(1), 𝑥 2)

0

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑢⊤𝜎(ℎ)

𝜙(great)

𝜙(outstanding)

𝑥(2) = 𝜙(movie)

𝜙(film) 𝜙(drama)
Contains all possible values of ℎ

subject to 𝑥(1)𝜖 , 𝑥(2)𝜖

Contains all 𝑜𝑢𝑡𝑝𝑢𝑡

subject to ℎ 𝜖

Input: amazing movie

Certified
to predict y=1

𝑜𝑢𝑡𝑝𝑢𝑡 > 0 means
predict 𝑦 = 1

great film

a. Input layer b. Hidden layer c. Output layer

Figure 3.2: Computing a certi�cate of robustness with interval bound propagation. (a) A neural
NLP model typically embeds an input sentence as a sequence of word vectors (blue and green circles).
In our setting, an adversary may replace each word with a related word, which has a di�erent word
vector (pink circles). We compute interval bounds (blue and green boxes) that circumscribe the
possible word vectors that the adversary can inject. (b) The model then applies a series of linear
algebraic operations to these word vectors (yellow circle). Since these operations typically combine
information from multiple word vectors, the set of all possible values for these hidden (intermediate)
layers is exponentially large in the size of the input (8 = 3×3−1 pink dots). IBP formulas construct
an interval bound around these possible values, based on the interval bounds from the previous layer
(yellow box). These interval bounds propagate through the computation graph of the model. (c)
For binary classi�cation, the model's output (red dot) is a single real number, where the prediction
is the positive label i� the output > 0. If the interval bound for this output (red interval) is entirely
to the right of 0, the model is guaranteed to always predict the positive label; this is a certi�cate of
robustness on this example, since the correct label is positive.

robust models (Section 3.2.4).

3.2.1 Bounds for the input layer

Previous work (Gowal et al., 2019) applied IBP to continuous image perturbations, which are natu-

rally represented with interval bounds (Dvijotham et al., 2018). We instead work with discrete word

substitutions, which we must convert into interval bounds Oinput in order to use IBP. Given input

words x = x1, . . . , xL, we assume that the model embeds each word as

ginput = [φ(x1), . . . , φ(xL)] ∈ RL×d, (3.4)

where φ(xi) ∈ Rd is the word vector for word xi. To compute Oinput ⊇ Ginput, recall that each input

word xi can be replaced with any x̃i ∈ S(x, i). So, for each coordinate j ∈ {1, . . . , d}, we can obtain

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 32

Figure 3.3: Bounds on the word vector inputs to the neural network. Consider a word (sentence
of length one) x = a with the set of substitution words S(x, 1) = {a, b, c, d, e}. (a) IBP constructs
axis-aligned bounds around a set of word vectors. These bounds may be loose, especially if the word
vectors are pre-trained and �xed. (b) A di�erent word vector space can give tighter IBP bounds, if
the convex hull of the word vectors is better approximated by an axis-aligned box.

an interval bound Oinput
ij = [`inputij , uinputij] for ginputij by computing the smallest axis-aligned box that

contains all the word vectors:

`inputij = min
w∈S(x,i)

φ(w)j , (3.5)

uinputij = max
w∈S(x,i)

φ(w)j . (3.6)

Figure 3.3 illustrates these bounds. We can view this as relaxing a set of discrete points to a convex

set that contains all of the points. Section 3.3.2 discusses modeling choices to make this box tighter.

3.2.2 Interval bounds for elementary functions

Next, we describe how to compute the interval of a node i from intervals of its dependencies. Gowal

et al. (2019) show how to e�ciently compute interval bounds for a�ne transformations (i.e., linear

layers) and monotonic elementwise nonlinearities; we include these below for completeness. This

su�ces to compute interval bounds for feedforward networks and CNNs. However, common NLP

model components like LSTMs and attention also rely on softmax (for attention), element-wise

multiplication (for LSTM gates), and dot product (for computing attention scores). We show how

to compute interval bounds for these new operations. These building blocks can be used to compute

interval bounds not only for LSTMs and attention, but also for any model that uses these elementary

functions.

For ease of notation, we drop the superscript i on gi and write that a node computes a result

zres = g(zdep) where zres ∈ R and zdep ∈ Rm for m = |dep(i)|. We are given intervals Odep such

that zdepj ∈ Odep
j = [`depj , udepj] for each coordinate j and want to compute Ores = [`res, ures].

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 33

A�ne transformations. A�ne transformations are the building blocks of neural networks. Sup-

pose zres = a>zdep + b for weight a ∈ Rm and bias b ∈ R. zres is largest when positive entries of a

are multiplied with udep and negative with `dep:

ures = 0.5(a+ |a|)>︸ ︷︷ ︸
positive

udep + 0.5(a− |a|)>︸ ︷︷ ︸
negative

`dep + b

= µ+ r, (3.7)

where µ = 0.5a>(`dep+udep)+b and r = 0.5|a|>(u−l). A similar computation yields that `res = µ−r.
Therefore, the interval Ores can be computed using two inner product evaluations: one with a and

one with |a|.

Monotonic scalar functions. Activation functions such as ReLU, sigmoid and tanh are mono-

tonic. Suppose zres = σ(zdep) where zres, zdep ∈ R, i.e. the node applies an element-wise function

to its input. The intervals can be computed trivially since zres is minimized at `dep and maximized

at udep.

`res = σ(`dep), ures = σ(udep). (3.8)

Softmax layer. The softmax function is often used to convert activations into a probability dis-

tribution, e.g., for attention. Gowal et al. (2019) uses unnormalized logits and does not handle

softmax operations. Formally, let zres represent the normalized score of the word at position c. We

have zres =
exp(zdepc)∑m

j=1 exp(zdepj)
. The value of zres is largest when zdepc takes its largest value and all other

words take the smallest value:

ures =
exp(udepc)

exp(udepc) +
∑
j 6=c

exp(`depj)
. (3.9)

We obtain a similar expression for `res. Note that `res and ures can each be computed in a forward

pass, with some care taken to avoid numerical instability (see Appendix A.1).

Element-wise multiplication and dot product. Models like LSTMs incorporate gates which

perform element-wise multiplication of two activations. Let zres = zdep1 · zdep2 where zres, zdep1 , zdep2 ∈
R. The extreme values of the product occur at one of the four points corresponding to the products

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 34

of the extreme values of the inputs. In other words,

C = {`dep1 · `dep2 , `dep1 · udep2 , udep1 · `dep2 , udep1 · udep2 },

`res = min (C) ,

ures = max (C) . (3.10)

Propagating intervals through multiplication nodes therefore requires four multiplications.

Dot products between activations are often used to compute attention scores.1 The dot product

(zdep1)>zdep2 is just the sum of the element-wise product zdep1 �zdep2 . Therefore, we can bound the dot

product by summing the bounds on each element of zdep1 � zdep2 , using the formula for element-wise

multiplication.

3.2.3 Final layer

Classi�cation models typically output a single logit for binary classi�cation, or k logits for k-way

classi�cation. The �nal loss f(z, θ) is a function of the logits s(x), where s(x)j denotes the logit

associated with label j.2 For standard loss functions, we can represent this function in terms the

elementary functions described in Section 3.2.2.

1. Zero-one loss: f(z, θ) = I[s(x)y − maxy′ 6=y s(x)y′ > 0] involves a max operation, subtraction

(an a�ne operation), and a (monotonic) step function.

2. Cross entropy: For multi-class classi�cation, f(z, θ) = softmax(s(x)). In the binary case,

f(z, θ) = σ(s(x)), where the sigmoid function σ is monotonic.

Thus, we can compute bounds on the loss O(z, θ) = [`�nal, u�nal] from bounds on the logits.

3.2.4 Certi�ably robust training with IBP

Finally, we describe certi�ably robust training, in which we encourage robustness by minimizing the

upper bound on the worst-case loss (Dvijotham et al., 2018; Gowal et al., 2019). Recall that for an

example z and parameters θ, u�nal(z, θ) is the upper bound on the loss f(z, θ). Given a dataset D,

we optimize a weighted combination of the normal loss and the upper bound u�nal,

min
θ

∑
z∈D

(1− κ)f(z, θ) + κu�nal(z, θ), (3.11)

where 0 ≤ κ ≤ 1 is a scalar hyperparameter.

1 The interval bound formula for a�ne layers from Gowal et al. (2019) do not apply to the dot product as described
here, because for the dot product both vectors have associated bounds; in an a�ne layer, the input has bounds, but
the weight matrix is �xed.

2Binary classi�cation with labels y = 0 and y = 1 corresponds to a special case where s(x)1 = −s(x)0.

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 35

As described above, we compute u�nal in a modular fashion: each layer has an accompanying

function that computes bounds on its outputs given bounds on its inputs. Therefore, we can easily

apply IBP to new architectures. Bounds propagate through layers via forward passes, so the entire

objective (3.11) can be optimized via backpropagation.

Gowal et al. (2019) found that this objective was easier to optimize by starting with a smaller

space of allowed perturbations, and make it larger during training. We accomplish this by arti�cially

shrinking the input layer intervals Oinput
ij = [`inputij , uinputij] towards the original value φ(xi)j by a

factor of ε:

`inputij ← φ(xi)j − ε(φ(xi)j − `inputij)

uinputij ← φ(xi)j + ε(uinputij − φ(xi)j).

Standard training corresponds to ε = 0. We train for T init epochs while linearly increasing ε from

0 to 1, and also increasing κ from 0 up to a maximum value of κ?, We then train for an additional

T �nal epochs at κ = κ? and ε = 1.

To summarize, we use IBP to compute an upper bound on the model's loss when given an

adversarially perturbed input. This bound is computed in a modular fashion. We e�ciently train

models to minimize this bound via backpropagation.

3.3 Tasks and models

Now we describe the tasks and model architectures on which we run experiments. These models are

all built from the primitives in Section 3.2.

3.3.1 Tasks

Following Alzantot et al. (2018), we evaluate on two standard NLP datasets: the IMDB sentiment

analysis dataset (Maas et al., 2011) and the Stanford Natural Language Inference (SNLI) dataset

(Bowman et al., 2015). For IMDB, the model is given a movie review and must classify it as positive

or negative. For SNLI, the model is given two sentences, a premise and a hypothesis, and is asked

whether the premise entails, contradicts, or is neutral with respect to the hypothesis. For SNLI, the

adversary is only allowed to change the hypothesis, as in Alzantot et al. (2018), though it is possible

to also allow changing the premise.

3.3.2 Models

IMDB. We implemented three models for IMDB. The bag-of-words model (BoW) averages the

word vectors for each word in the input, then passes this through a two-layer feedforward network

with 100-dimensional hidden state to obtain a �nal logit. The other models are similar, except they

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 36

run either a CNN or bidirectional LSTM on the word vectors, then average their hidden states. All

models are trained on cross entropy loss.

SNLI We implemented two models for SNLI. The bag-of-words model (BoW) encodes the premise

and hypothesis separately by summing their word vectors, then feeds the concatenation of these

encodings to a 3-layer feedforward network. We also reimplement the Decomposable Attention

model (Parikh et al., 2016), which uses attention between the premise and hypothesis to compute

richer representations of each word in both sentences. These context-aware vectors are used in the

same way BoW uses the original word vectors to generate the �nal prediction. Both models are

trained on cross entropy loss.

Word vector layer. The choice of word vectors a�ects the tightness of our interval bounds. We

choose to de�ne the word vector φ(w) for word w as the output of a feedforward layer applied to a

�xed pre-trained word vector φpre(w):

φ(w) = ReLU(gword(φpre(w))), (3.12)

where gword is a learned linear transformation. Learning gword with certi�ably robust training

encourages it to orient the word vectors so that the convex hull of the word vectors is close to an

axis-aligned box. Note that gword is applied before bounds are computed via (3.5).3 Applying gword

after the bound calculation would result in looser interval bounds, since the original word vectors

φpre(w) might be poorly approximated by interval bounds (e.g., Figure 3.3a), compared to φ(w)

(e.g., Figure 3.3b). Section 3.4.7 con�rms the importance of adding gword. We use 300-dimensional

GloVe vectors (Pennington et al., 2014) as our φpre(w).

3.4 Experiments

3.4.1 Setup

Word substitution perturbations. We base our sets of allowed word substitutions S(x, i) on

the substitutions allowed by Alzantot et al. (2018). They demonstrated that their substitutions lead

to adversarial examples that are qualitatively similar to the original input and retain the original

label, as judged by humans. Alzantot et al. (2018) de�ne the neighbors N(w) of a word w as the

n = 8 nearest neighbors of w in a �counter-�tted� word vector space where antonyms are far apart

(Mrk²i¢ et al., 2016).4 The neighbors must also lie within some Euclidean distance threshold. They

3 Equation (3.5) must be applied before the model can combine information from multiple words, but it can be
delayed until after processing each word independently.

4 Note that the model itself classi�es using a di�erent set of pre-trained word vectors; the counter-�tted vectors
are only used to de�ne the set of allowed substitution words.

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 37

also use a language model constraint to avoid nonsensical perturbations: they allow substituting xi

with x̃i ∈ N(xi) if and only if it does not decrease the log-likelihood of the text under a pre-trained

language model by more than some threshold.

We make three modi�cations to this approach. First, in Alzantot et al. (2018), the adversary

applies substitutions one at a time, and the neighborhoods and language model scores are computed

relative to the current altered version of the input. This results in a hard-to-de�ne attack surface,

as changing one word can allow or disallow changes to other words. It also requires recomputing

language model scores at each iteration of the genetic attack, which is ine�cient. Moreover, the

same word can be substituted multiple times, leading to semantic drift. We instead de�ne allowed

substitutions relative to the original sentence x, and disallow repeated substitutions. More precisely,

we pre-compute the allowed substitutions S(x, i) at index i based on the original x. We de�ne S(x, i)

as the set of x̃i ∈ N(xi) such that

logP (xi−W :i−1, x̃i, xi+1:i+W) ≥

logP (xi−W :i+W)− δ (3.13)

where probabilities are assigned by a pre-trained language model, and the window radius W and

threshold δ are hyperparameters. We use W = 6 and δ = 5. Second, we also use a faster language

model that allows us to query longer contexts.5 This language model achieves perplexity of 50.79

on the One Billion Word dataset (Chelba et al., 2013). Alzantot et al. (2018) use a di�erent, slower

language model, which compels them to use a smaller window radius of W = 1. Finally, we use the

language model constraint only at test time; the model is trained against all perturbations in N(w).

This encourages the model to be robust to a larger space of perturbations, instead of specializing

for the particular choice of language model.

Analysis of word neighbors. One natural question is whether we could guarantee robustness

by having the model treat all neighboring words the same. We could construct equivalence classes

of words from the transitive closure of N(w), and represent each equivalence class with one embed-

ding. We found that this would lose a signi�cant amount of information. Out of the 50,000 word

vocabulary, 19,122 words would be in the same equivalence class, including the words �good�, �bad�,

�excellent�, and �terrible.� Of the remaining words, 24,389 (79%) have no neighbors.

Baseline training methods. We compare certi�ably robust training (Section 3.2) with both

standard training and data augmentation, which has been used in NLP to encourage robustness

to various types of perturbations (Jia and Liang, 2017; Belinkov and Bisk, 2018; Iyyer et al., 2018;

Ribeiro et al., 2018). In data augmentation, for each training example z, we augment the dataset with

K new examples z̃ by sampling z̃ uniformly from Bperturb(z), then train on the normal cross entropy

5https://github.com/windweller/l2w

https://github.com/windweller/l2w

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 38

loss. For our main experiments, we use K = 4. We do not use adversarial training (Goodfellow

et al., 2015) because it would require running an adversarial search procedure at each training step,

which would be prohibitively slow.

Evaluation of robustness. We wish to evaluate robustness of models to all word substitution

perturbations. Ideally, we would directly measure robust accuracy, the fraction of test examples

z for which the model is correct on all z̃ ∈ Bperturb(z). However, evaluating this exactly involves

enumerating the exponentially large set of perturbations, which is intractable. Instead, we compute

tractable upper and lower bounds:

1. Genetic attack accuracy: Alzantot et al. (2018) demonstrate the e�ectiveness of a genetic al-

gorithm that searches for perturbations z̃ that cause model misclassi�cation. The algorithm

maintains a �population� of candidate z̃'s and repeatedly perturbs and combines them. We used

a population size of 60 and ran 40 search iterations on each example. Since the algorithm does

not exhaustively search over Bperturb(z), accuracy on the perturbations it �nds is an upper bound

on the true robust accuracy.

2. Certi�ed accuracy: To complement this upper bound, we use IBP to obtain a tractable lower

bound on the robust accuracy. Recall from Section 3.2.3 that we can use IBP to get an upper

bound on the zero-one loss. From this, we obtain a lower bound on the robust accuracy by

measuring the fraction of test examples for which the zero-one loss is guaranteed to be 0.

Experimental details. For IMDB, we split the o�cial train set into train and development

subsets, putting reviews for di�erent movies into di�erent splits (matching the original train/test

split). For SNLI, we use the o�cial train/development/test split. We do not run training for a set

number of epochs but do early stopping on the development set instead. For normal training, we

do early stopping on normal development set accuracy. For training with data augmentation, we do

early stopping on the accuracy on the augmented development set. For certi�ably robust training,

we do early stopping on the certi�ably robust accuracy on the development set. We use the Adam

optimizer (Kingma and Ba, 2015) to train all models. We tune hyperparameters on the development

set for each dataset. Hyperparameters are reported in Table 3.1.

On IMDB, we restrict the model to only use the 50, 000 words that are in the vocabulary of

the counter-�tted word vector space of Mrk²i¢ et al. (2016). This is because perturbations are not

allowed for any words not in this vocabulary, i.e. N(w) = {w} for w /∈ V . Therefore, the model

is strongly incentivized to predict based on words outside of this set. While this is a valid way to

achieve high certi�ed accuracy, it is not a valid robustness strategy in general. We simply delete all

words that are not in the vocabulary before feeding the input to the model.

For SNLI, we use 100-dimensional hidden state for the BoW model and a 3-layer feedforward

network. These values were chosen by a hyperparameter search on the dev set. For DecompAttn,

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 39

System κ
Learning
rate

Dropout
prob.

Weight
decay

Gradient norm
clip value

T init

IMDB, BOW 0.8 1× 10−3 0.2 1× 10−4 0.25 40
IMDB, CNN 0.8 1× 10−3 0.2 1× 10−4 0.25 40
IMDB, LSTM 0.8 1× 10−3 0.2 1× 10−4 0.25 20
SNLI, BoW 0.5 5× 10−4 0.1 1× 10−4 0.25 35
SNLI, DecompAttn 0.5 1× 10−4 0.1 0 0.25 50

Table 3.1: Training hyperparameters for training the models. The same hyperparameters were used
for all training settings (standard training, data augmentation, robust training).

we use a 300-dimensional hidden state and a 2-layer feedforward network on top of the context-

aware vectors. These values were chosen to match Parikh et al. (2016). Our implementation of

the Decomposable Attention follows the original described in (Parikh et al., 2016) except for a few

di�erences listed below:

• We do not normalize GloVe vectors to have norm 1.

• We do not hash out-of-vocabulary words to randomly generated vectors that we train, instead

we omit them.

• We do randomly generate a null token vector that we then train. (Whether the null vector is

trained is unspeci�ed in the original paper.)

• We use the Adam optimizer (with a learning rate of 1× 10−4) instead of AdaGrad.

• We use a batch size of 256 instead of 4.

• We use a dropout probability of 0.1 instead of 0.2.

• We do not use the intra-sentence attention module.

3.4.2 Main results

Table 3.2 and Table 3.3 show our main results for IMDB and SNLI, respectively. We measure

accuracy on perturbations found by the genetic attack (upper bound on robust accuracy) and IBP-

certi�ed accuracy (lower bound on robust accuracy) on 1000 random test examples from IMDB,6

and all 9824 test examples from SNLI. Across many architectures, our models are more robust to

perturbations than ones trained with data augmentation. This e�ect is especially pronounced on

IMDB, where inputs can be hundreds of words long, so many words can be perturbed. On IMDB,

the best IBP-trained model gets 75.0% accuracy on perturbations found by the genetic attack,

6We downsample the test set because the genetic attack is slow on IMDB, as inputs can be hundreds of words
long.

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 40

System
Genetic attack
(Upper bound)

IBP-certi�ed
(Lower bound)

Standard training
BoW 9.6 0.8
CNN 7.9 0.1
LSTM 6.9 0.0

Robust training
BoW 70.5 68.9
CNN 75.0 74.2
LSTM 64.7 63.0

Data augmentation
BoW 34.6 3.5
CNN 35.2 0.3
LSTM 33.0 0.0

Table 3.2: Robustness of models on IMDB. We report accuracy on perturbations obtained via the
genetic attack (upper bound on robust accuracy), and certi�ed accuracy obtained using IBP (lower
bound on robust accuracy) on 1000 random IMDB test set examples. For all models, robust training
vastly outperforms data augmentation (p < 10−63, Wilcoxon signed-rank test).

whereas the best data augmentation model gets 35.2%. Normally trained models are even worse,

with adversarial accuracies below 10%.

Certi�ed accuracy. Certi�ably robust training yields models with tight guarantees on robustness�

the upper and lower bounds on robust accuracy are close. On IMDB, the best model is guaranteed

to be correct on all perturbations of 74.2% of test examples, very close to the 75.0% accuracy against

the genetic attack. In contrast, for data augmentation models, the IBP bound cannot guarantee

robustness on almost all examples. It is possible that a stronger attack (e.g., exhaustive search)

could further lower the accuracy of these models, or that the IBP bounds are loose.

LSTM models can be certi�ed with IBP, though they fare worse than other models. IBP bounds

may be loose for RNNs because of their long computation paths, along which looseness of bounds

can get ampli�ed. Nonetheless, in Section 3.4.8, we show on synthetic data that robustly trained

LSTMs can learn long-range dependencies.

3.4.3 Clean versus robust accuracy

Robust training does cause a moderate drop in clean accuracy (accuracy on unperturbed test ex-

amples) compared with normal training. On IMDB, our normally trained CNN model gets 89%

clean accuracy, compared to 81% for the robustly trained model. We also see a drop on SNLI: the

normally trained BoW model gets 83% clean accuracy, compared to 79% for the robustly trained

model. Similar drops in clean accuracy are also seen for robust models in vision (Madry et al.,

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 41

System
Genetic attack
(Upper bound)

IBP-certi�ed
(Lower bound)

Normal training
BoW 40.5 2.3
DecompAttn 40.3 1.4

Robust training
BoW 75.0 72.7
DecompAttn 73.7 72.4

Data augmentation
BoW 68.5 7.7
DecompAttn 70.8 1.4

Table 3.3: Robustness of models on the SNLI test set. For both models, robust training outperforms
data augmentation (p < 10−10, Wilcoxon signed-rank test).

2018). For example, the state-of-the-art robust model on CIFAR10 (Zhang et al., 2019b) only has

85% clean accuracy, but comparable normally-trained models get > 96% accuracy.

We found that the robustly trained models tend to under�t the training data�on IMDB, the

CNN model gets only 86% clean training accuracy, lower than the test accuracy of the normally

trained model. The model continued to under�t when we increased either the depth or width of

the network. One possible explanation is that the attack surface adds a lot of noise, though a large

enough model should still be able to over�t the training set. Better optimization or a tighter way to

compute bounds could also improve training accuracy. We leave further exploration to future work.

Next, we analyzed the trade-o� between clean and robust accuracy by varying the importance

placed on perturbed examples during training. We use accuracy against the genetic attack as

our proxy for robust accuracy, rather than IBP-certi�ed accuracy, as IBP bounds may be loose for

models that were not trained with IBP. For data augmentation, we varyK, the number of augmented

examples per real example, from 1 to 64. For certi�ably robust training, we vary κ?, the weight of

the certi�ed robustness training objective, between 0.01 and 1.0. Figure 3.4 shows trade-o� curves

for the CNN model on 1000 random IMDB development set examples. Data augmentation can

increase robustness somewhat, but cannot reach very high adversarial accuracy. With certi�ably

robust training, we can trade o� some clean accuracy for much higher robust accuracy.

3.4.4 Runtime considerations

IBP enables e�cient computation of u�nal(z, θ), but it still incurs some overhead. Across model

architectures, we found that one epoch of certi�ably robust training takes between 2× and 4×
longer than one epoch of standard training. On the other hand, IBP certi�cates are much faster

to compute at test time than genetic attack accuracy. For the robustly trained CNN IMDB model,

computing certi�cates on 1000 test examples took 5 seconds, while running the genetic attack on

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 42

78 80 82 84 86 88
Clean accuracy

0

20

40

60

80

Ge
ne

tic
 se

ar
ch

 a
cc

ur
ac

y

Robust training
Data augmentation
Normal training

Figure 3.4: Trade-o� between clean accuracy and genetic attack accuracy for CNN models on IMDB.
Data augmentation cannot achieve high robustness. Certi�ably robust training yields much more
robust models, though at the cost of some clean accuracy. Lines connect Pareto optimal points for
each training strategy.

those same examples took over 3 hours.

3.4.5 Error analysis

We examined development set examples on which models were correct on the original input but

incorrect on the perturbation found by the genetic attack. We refer to such cases as robustness errors.

We focused on the CNN IMDB models trained normally, robustly, and with data augmentation. We

found that robustness errors of the robustly trained model mostly occurred when it was not con�dent

in its original prediction. The model had > 70% con�dence in the correct class for the original input

in only 14% of robustness errors. In contrast, the normally trained and data augmentation models

were more con�dent on their robustness errors; they had > 70% con�dence on the original example

in 92% and 87% of cases, respectively.

We next investigated how many words the genetic attack needed to change to cause misclassi�ca-

tion, as shown in Figure 3.5. For the normally trained model, some robustness errors involved only a

couple changed words (e.g., �I've �nally found a movie worse than . . . � was classi�ed negative, but

the same review with �I've �nally discovered a movie worse than. . . � was classi�ed positive), but

more changes were also common (e.g., part of a review was changed from �The creature looked very

cheesy� to �The creature seemed supremely dorky�, with 15 words changed in total). Surprisingly,

certi�ably robust training nearly eliminated robustness errors in which the genetic attack had to

change many words: the genetic attack either caused an error by changing a couple words, or was

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 43

0 5 10 15 20
Number of words perturbed

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

Robust training
Data augmentation
Normal training

Figure 3.5: Number of words perturbed by the genetic attack to cause errors by CNN models
on 1000 IMDB development set examples. Certi�ably robust training reduces the e�ect of many
simultaneous perturbations.

unable to trigger an error at all. In contrast, data augmentation is unable to cover the exponen-

tially large space of perturbations that involve many words, so it does not prevent errors caused by

changing many words.

3.4.6 Training schedule

Table 3.4 shows the e�ect of holding ε or κ �xed during training, as suggested by Gowal et al. (2019),

on 1000 randomly chosen examples from the IMDB development set. Fixing ε = 1 during training

led to a 5 point reduction in certi�ed accuracy for the CNN, demonstrating that slowly increasing

ε is important. On the other hand, we found that holding κ to the �xed value κ∗ did not hurt

accuracy, and in fact may be preferable, despite earlier experiments we ran suggesting the opposite.

Here we only report certi�ed accuracy, as all models are trained with certi�ably robust training, and

certi�ed accuracy is much faster to compute for development purposes.

3.4.7 Word vector analysis

We determined the importance of the extra feedforward layer gword that we apply to pre-trained word

vectors, as described in Section 3.3.2. We compared with directly using pre-trained word vectors, i.e.

φ(w) = φpre(w). We also tried using gword but applying interval bounds on φpre(w), then computing

bounds on φ(w) with the IBP formula for a�ne layers. In both cases, we could not train a CNN to

achieve more than 52.2% certi�ed accuracy on the development set. Thus, transforming pre-trained

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 44

System
IBP-certi�ed
(Lower bound)

BOW 68.8
→ Fixed ε 46.6
→ Fixed κ 69.8
→ Fixed ε and κ 66.3

CNN 72.5
→ Fixed ε 67.6
→ Fixed κ 74.5
→ Fixed ε and κ 65.3

LSTM 62.5
→ Fixed ε 43.7
→ Fixed κ 63.0
→ Fixed ε and κ 62.0

Table 3.4: E�ects of holding ε and κ �xed during training. All numbers are on 1000 randomly chosen
IMDB development set examples.

word vectors and applying interval bounds after is crucial for robust training.

To better understand the e�ect of gword, we checked whether gword made interval bound boxes

around neighborhoods N(w) smaller. For each word w with |N(w)| > 1, and for both the pre-trained

vectors φpre(·) and transformed vectors φ(·), we compute

1

d

d∑
i=1

1

σ i

(
uwordw − `wordw

)
where `wordw and uwordw are the interval bounds around either {φpre(w̃) : w̃ ∈ N(w)} or {φ(w̃) :

w̃ ∈ N(w)}, and σi is the standard deviation across the vocabulary of the i-th coordinate of the

embeddings. This quantity measures the average width of the IBP bounds for the word vectors of

w and its neighbors, normalized by the standard deviation in each coordinate. On 78.2% of words

with |N(w)| > 1, this value was smaller for the transformed vectors learned by the CNN on IMDB

with robust training, compared to the GloVe vectors. For same model with normal training, the

value was smaller only 54.5% of the time, implying that robust training makes the transformation

produce tighter bounds. We observed the same pattern for other model architectures as well.

3.4.8 Certifying long-term memory

We might expect that LSTMs are di�cult to certify with IBP, due to their long computation paths.

To test whether robust training can learn recurrent models that track state across many time steps,

we created a toy binary classi�cation task where the input is a sequence of words x1, . . . , xL, and

the label y is 1 if x1 = xL and 0 otherwise. We trained an LSTM model that reads the input

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 45

left-to-right, and tries to predict y with a two-layer feedforward network on top of the �nal hidden

state. To do this task, the model must encode the �rst word in its state and remember it until the

�nal timestep; a bag of words model cannot do this task. For perturbations, we allow replacing

every middle word x2, . . . , xL−1 with any word in the vocabulary. We use robust training on 4000

randomly generated examples, where the length of each example is sampled uniformly between 3

and 10. The model obtains 100% certi�ed accuracy on a test set of 1000 examples, con�rming that

robust training can learn models that track state across many time steps.

For this experiment, we found it important to �rst train for multiple epochs with no certi�ed

objective, before increasing ε and κ; otherwise, the model gets stuck in bad local optima. We trained

for 50 epochs using the normal objective, 50 epochs increasing ε towards 1 and κ towards 0.5, then

17 �nal epochs (determined by early stopping) with these �nal values of ε and κ.7 We leave further

exploration of these learning schedule tactics to future work. We also found it necessary to use a

larger LSTM�we used one with 300-dimensional hidden states.

3.5 Discussion

State-of-the-art NLP models are accurate on average, but they still have signi�cant gaps in their

abilities, as demonstrated by adversarial examples. Certi�ably robust training provides a general,

principled mechanism to avoid such gaps by encouraging models to make correct predictions on all

inputs within some known perturbation neighborhood. This type of robustness is a necessary (but

not su�cient) property of models that truly understand language.

The key challenge we grappled with was combinatorial explosion resulting from the independent

application of multiple local paraphrase rules. While we focused on word substitutions de�ned

by word vector similarity, local paraphrase rules come in many forms. Bhagat and Hovy (2013)

categorize local paraphrasing operations found in existing corpora. Overall, the most common

ones were synonym substitutions, function word variation, and substitutions that rely on external

knowledge. Our work focuses primarily on the �rst category. Function word variations include some

relatively simple substitutions (e.g., �results of the competition� becomes �results for the competition�)

but also cases where changes in light verbs induce other changes (e.g., �Pat showed a nice demo�

becomes �Pat's demo was nice�). Substitutions that rely on external knowledge include metonymy,

such as �Bush� being a stand-in for �The [American] government�.

On the data side, it is non-trivial to generate all of these substitutions automatically. For

evaluation purposes, it would be interesting to have humans provide a diverse set of local paraphrase

operations for di�erent parts of a sentence. Models would be evaluated on whether they can always

predict the correct answer on all paraphrase generated by a combination of these local rules. This

type of data would presumably be expensive to collect, so training methods might instead leverage

7 Note that this dataset is much smaller than IMDB and SNLI, so each epoch corresponds to many fewer parameter
updates.

CHAPTER 3. CERTIFIABLY ROBUST TRAINING 46

paraphrase generation methods. This setting not only requires robustness to a more diverse set of

paraphrase operations, but it also introduces a new type of generalization challenge, since the system

designer no longer knows ahead of time exactly what paraphrase rules are possible for any given

sentence.

Broadening the types of paraphrase rules we consider also poses a new technical challenge.

The common paraphrase rules from Bhagat and Hovy (2013) include instances of word insertions,

deletions, and even rearrangements (e.g., when �nice� moved from prepositive to postpositive). The

methods presented in this chapter are restricted to word substitutions, which keep the size of the

input constant; insertions, deletions, and rearrangements complicate this picture. Going forward, it

seems likely that model architecture will have to play a much more important role, as only some

architectures will be well-suited to learning invariances to these operations. Thus, we may be able to

unify work on adversarial robustness with work on designing model architectures that intrinsically

capture the structure of language. For example, while CNNs work well enough for many text

classi�cation datasets, they are unappealing models of language as they are fundamentally unable

to keep track of long-range context. RNNs have long been considered more natural for handling

linguistic data. RNNs also seem comparatively better-equipped to handle insertions and deletions;

for example, an RNN could learn to ignore certain inserted words by simply not changing the hidden

state for one timestep. Robustness to phrase-level transformations may also pair well with models

that make use of explicit phrase structure, such as tree-recursive neural networks (Socher et al.,

2013). Invariance to phrase-level paraphrase operations could be enforced as a property of the

phrase-level neural representations that these models build. One barrier is that we would require

access to tree structures generated in some way that is itself robust to perturbations. This in turn

motivates the use of models that jointly learn phrase structure and neural representations of phrases,

such as DIORA (Drozdov et al., 2019).

We can also move beyond paraphrase, which is roughly bidirectional entailment, to unidirectional

entailment. For many NLP tasks, such as sentiment analysis or relation extraction, if a sentence x′

entails sentence x, and y is the correct label for x, then x′ should also have label y.8 Prior work

on natural logic in NLI has studied how word substitutions a�ect entailment relationships between

sentences, and thus could be used to de�ne additional perturbations (MacCartney and Manning,

2008; Angeli and Manning, 2014). Natural logic approaches typically use a search procedure to �nd

a chain of valid entailments; a neural model trained to respect natural logic rules could learn to

e�ciently approximate the result of this search.

8For relation extraction, this is generally true as long as y is not the �no relation� label. Depending on the schema
being used, it may also be incorrect to use a general label (e.g., �employee of�) when a more speci�c label is also
available and correct (e.g., �president of�).

Chapter 4

Robust Encodings

In the previous chapter, we proposed certi�ably robust training as a way to ensure invariance to

word-level perturbations. While this method greatly improves adversarial accuracy, the bene�ts

of certi�ably robust training are limited to one task and one model at a time. Robustness to

perturbations is often a task-agnostic goal: across a variety of NLP tasks, models should be invariant

to many of the same kinds of perturbations. For example, for many tasks, paraphrasing the input

or adding typos does not alter the correct label. Certi�ably robust training does not re�ect this

task-agnosticity. Robustly training the same model on a new task requires rerunning the training

procedure essentially from scratch; no signi�cant work can be shared across tasks.

A similar problem arises when attempting to reuse work across di�erent model architectures.

Replacing an old model architecture with a new one again requires rerunning certi�ably robust

training from scratch. Perhaps even more problematic is the fact that while interval bound propaga-

tion can certify robustness of many basic neural models, it places some strong constraints on model

architecture. In particular, large-scale pre-trained Transformers like BERT (Devlin et al., 2019)

pose numerous problems. First, BERT uses non-monotonic activation functions, which lack tight

interval bounds. Second, BERT uses subword tokenization, meaning that a word substitution could

replace a single-token word with a multi-token word or vice versa, and our method cannot handle

these changes in sequence length. Finally, BERT is simply much larger than the models used in the

previous section. Interval bounds tend to become looser as the depth of the network increases.

Ideally we would like a �robustness� module that we could reuse across multiple tasks and with

arbitrary model architectures. Indeed, reusable components have driven recent progress in NLP.

For example, word vectors are a universal resource that are constructed once, then used for many

di�erent tasks. The exact same pre-trained BERT model can be easily and e�ciently �ne-tuned to

perform many di�erent tasks, and can be embedded into many di�erent model architectures. Can

we build a reusable robust defense that can easily work with complex, state-of-the-art architectures

like BERT? Pruthi et al. (2019), which uses a typo corrector to defend against adversarial typos,

47

CHAPTER 4. ROBUST ENCODINGS 48

Positive

Positive

Inspired acting

Inspikred ating

Complete flop

Copmlete fljop

Irnspired atcing

Negative

Inspired acting

Complete flop

Inspikred ating

Sentences Encodings Predictions

Figure 4.1: Example of a defense using RobEn. An adversary can perturb sentences (blue, under-
lined) to many di�erent perturbations (red, not underlined) within the attack surface (red, ovals).
We de�ne an encoding function α such that each perturbation of the input sentences maps to one
of a few encodings (grey, rounded rectangles). We can then use any model g to make predictions
given the encodings.

presents one such reusable defense: their typo corrector is trained once, then reused across di�erent

tasks. However, we �nd that current typo correctors do not perform well against even heuristic

adversarial attacks, limiting their applicability.

In this chapter, we propose robust encodings (RobEn), a framework to construct encodings that

can make systems using any model architecture provably robust to adversarial perturbations. The

core component of RobEn is an encoding function that maps sentences to a smaller discrete space

of encodings, which are then used to make predictions. We de�ne two desiderata that a robust

encoding function should satisfy: stability and �delity. First, to encourage consistent predictions

across perturbations, the encoding function should map all perturbations of a sentence to a small set

of encodings (stability). Simultaneously, encodings should remain informative enough that models

trained using encodings still perform well on unperturbed inputs (�delity). Figure 4.1 illustrates

a robust encoding function that is stable with respect to typos while retaining enough �delity to

distinguish di�erent unperturbed inputs. Since robust encodings collapse a (potentially very large)

space of perturbations to a small number of encodings, we can compute the exact robust accuracy

tractably; in comparison, interval bound propagation only gives a possibly loose lower bound on

robust accuracy. Moreover, these encodings can make any downstream model robust, including

state-of-the-art transformers like BERT, and can be reused across di�erent tasks.

We validate our task-agnostic approach by constructing a single encoding function for English

that defends against adversarial typos, as robustness to typos is nearly universally desirable in NLP

tasks. In particular, we allow an attacker to add independent edit-distance-one typos to each word

in an input sentence, resulting in exponentially more possible perturbations than previous work

(Pruthi et al., 2019; Huang et al., 2019). As with word substitutions in the previous chapter, typos

CHAPTER 4. ROBUST ENCODINGS 49

This
Thus
…
Tihs

fulm
fllm
…
fim

This delightful film …

dlightful
deliightful
…
delirhtful

x
Tihs dlightful fllm …

Pos

Neg

Input x

Perturbation set

Perturbation x
BERT

BERT

Figure 4.2: Attack model allowing independent perturbations of each token. The original input, x is
classi�ed by the model as positive while the perturbation x̃ =, obtained by choosing perturbations
of �This�, �delightful�, and ��lm� independently, is classi�ed as negative. Independent perturbations
of each word results in an exponentially large perturbation space B(x).

induce a combinatorial explosion of possible perturbations, as multiple words in a sentence may be

independently corrupted; a robust encoding function must collapse this exponentially large space to

a very small number of encodings. We consider a natural class of token-level encodings, which are

obtained by encoding each token in a sentence independently. This structure allows us to express

stability and �delity in terms of a token-level clustering objective, which we optimize.

Empirically, our instantiation of RobEn achieves state-of-the-art robust accuracy against adver-

sarial typos across six classi�cation tasks from the GLUE benchmark (Wang et al., 2019b). Our best

system, which combines RobEn with a BERT classi�er (Devlin et al., 2019), achieves an average

robust accuracy of 71.3% across the six tasks. In contrast, a state-of-the-art defense that combines

BERT with a typo corrector (Pruthi et al., 2019) gets 35.3% accuracy when adversarial typos are

inserted, and a standard data augmentation defense gets only 12.2% accuracy.

4.1 Setup

Tasks. We consider NLP tasks that require classifying textual input x ∈ X to a class y ∈ Y. For
simplicity, we refer to inputs as sentences. Each sentence x consists of tokens x1, . . . , xL from the

set of all strings T . Let ptask denote the distribution over inputs and labels for a particular task

of interest.1 The goal is to learn a model f : X → Y that maps sentences to labels, given training

examples (x, y) ∼ ptask.

Attack surface. We consider an attack surface in which an adversary can perturb each token xi

of a sentence to some token x̃i ∈ B(xi), where B(xi) is the set of valid perturbations of xi (including

1This is the same as p from Chapter 2, but in this chapter we use ptask to distinguish from other distributions to
be discussed later.

CHAPTER 4. ROBUST ENCODINGS 50

xi itself). For example, if xi is the word �acting,� B(xi) could be a set of allowed typos of xi, e.g.,

{�acting�, �ating�, �atcing�, . . . }. We de�ne B(x) as the set of all valid perturbations of the set x,

where every possible combination of token-level typos is allowed:

B(x) = {(x̃1, . . . , x̃L) | x̃i ∈ B(xi)∀ i} (4.1)

The size of the attack surface |B(x)| grows exponentially with respect to number of input tokens,

as shown in Figure 4.2. In general xi ∈ B(xi), so some words could remain unperturbed.

Model evaluation. In this chapter, we use three evaluation metrics for any given task.

First, we evaluate a model on its standard accuracy on the task:

accstd(f) = E
(x,y)∼ptask

[I[f(x) = y]] . (4.2)

Next, we are interested in models that also have high robust accuracy, the fraction of examples

(x, y) for which the model is correct on all valid perturbations x̃ ∈ B(x) allowed in the attack model:

accrob(f) = E
(x,y)∼ptask

[
min
x̃∈B(x)

I [f(x̃) = y]

]
. (4.3)

It is common to instead compute accuracy against a heuristic attack a that maps clean sentences x

to perturbed sentences a(x) ∈ B(x).

accattack(f ; a) = E
(x,y)∼ptask

[I[f(a(x)) = y]] . (4.4)

Typically, a(x) is the result of a heuristic search for a perturbation x̃ ∈ B(x) that f misclassi�es.

Note that accattack is a (possibly loose) upper bound of accrob because there could be perturbations

that the model misclassi�es but are not encountered during the heuristic search (Athalye et al.,

2018).

Recall that since robust accuracy is generally hard to compute, in Chapter 3 we computed

certi�ed accuracy, which is a potentially conservative lower bound for the true robust accuracy. In

this chapter, robust encodings enable us to tractably compute the exact robust accuracy.

4.2 Robust Encodings

We now introduce robust encodings (RobEn), a framework for constructing encodings that are

reusable across many tasks, and pair with arbitrary model architectures. In Section 4.2.1 we describe

the key components of RobEn, then in Section 4.2.2 we highlight desiderata RobEn should satisfy.

CHAPTER 4. ROBUST ENCODINGS 51

4.2.1 Encoding functions

A classi�er fα : X → Y using RobEn decomposes into two components: a �xed encoding function

α : X → Z, and a model that accepts encodings g : Z → Y.2 For any sentence x, our system makes

the prediction fα(x) = g(α(x)). Given training data {(xi, yi)}ni=1 and the encoding function α, we

learn g by performing standard training on encoded training points {(α(xi), yi)}ni=1.

Given an example (x, y), computing the robust accuracy of fα on (x, y) is straightforward and

e�cient if the set of possible encodings α(x̃) for some perturbation x̃ ∈ B(x) is small. In this

case, we can compute accrob(fα) e�ciently by generating this set of possible encodings, and feeding

each to g. Note that this procedure is completely indi�erent to the architecture of g. From these

computational considerations alone, we see that we would prefer a α that ensures that the set of all

α(x̃)'s is small for most plausible inputs x; this will indeed be a focus of the coming sections.

4.2.2 Encoding function desiderata

To have high robust accuracy on a task distribution ptask, a classi�er fα that uses α should make

consistent predictions on all x̃ ∈ B(x), the set of points described by the attack surface, for most

(x, y) ∼ ptask. It should also have high standard accuracy on unperturbed inputs drawn from ptask.

We term the former property stability, and the latter �delity.

As stated above, both stability and �delity are task-dependent notions. Nevertheless, we can

de�ne appropriate task-agnostic versions of both stability and �delity, such that if α has high task-

agnostic stability and �delity, it tends to have high task-speci�c stability and �delity on many

natural NLP tasks. Section 4.3 will give concrete instantiations of these task-agnostic de�nitions in

the context of robustness to typos.

Central to our task-agnostic de�nitions will be a corpus distribution pcorp over sentences. Ideally,

pcorp should include sentences that show up in most reasonable task distributions ptask. In practice,

we will choose pcorp to be the empirical distribution from a large, diverse corpus of text.

Stability. For an encoding function α and distribution over inputs pcorp, the (task-agnostic) sta-

bility Stab(α) measures how often α maps sentences x ∼ pcorp to the same encoding as all of their

perturbations. Note that if we could guarantee this property for ptask instead of pcorp, then any fα

that uses α is guaranteed to be invariant to perturbations for most inputs.

Fidelity. In a task-speci�c sense, an encoding function α has high �delity if models that use α can

still achieve high standard accuracy. Unfortunately, this notion of �delity is highly task-dependent.

For instance, for many tasks it is acceptable to collapse sentences that are paraphrases to the

same representation, as these should always receive the same label. However, the task of author

2We can set Z ⊆ X when g accepts sentences.

CHAPTER 4. ROBUST ENCODINGS 52

identi�cation makes heavy use of stylistic cues, and two sentences with equivalent meaning may be

indicative of di�erent authors.

We adopt a task-agnostic approximation of �delity that empirically aligns with the goal of high

standard accuracy on the suite of NLP tasks we use for evaluation. From an information theoretic

perspective, α can be used to achieve high standard accuracy (relative to the optimal predictor)

as long as it does not con�ate di�erent sentences that should receive di�erent labels. We could

guarantee this if we could impose the stronger requirement that if two sentences (of any label) are

randomly sampled from ptask, α will map them to di�erent encodings with high probability. To turn

this into a task-agnostic notion, we replace ptask with sentences drawn from pcorp, just as we did for

stability. Thus, we say that α has high (task-agnostic) �delity Fid(α) if it maps di�erent sentences

sampled from pcorp to di�erent encodings with high probability.

Trade-o�. Stability and �delity are inherently competing goals. An encoding function that maps

every sentence to the same encoding trivially maximizes stability, but is useless for any non-trivial

classi�cation task. Conversely, �delity is maximized when every input is mapped to itself, which has

very low stability. In the following section, we construct an instantiation of RobEn that balances

stability and �delity when the attack surface consists of typos.

4.3 Robust Encodings for Typos

We now concretize the above discussion in pursuit of robustness to adversarial typos, where an

adversary can add typos to each token in an English sentence (see Figure 4.2). Since this attack

surface is de�ned at the level of tokens, we restrict attention to token-wise encoding functions that

encode each token of a sentence independently. While token-wise encodings do not use contextual

information, recall that these encodings will be fed to a learned model g that can make heavy use

of context.

First, we will reduce the problem of generating token-level encodings to assigning vocabulary

words to clusters (Section 4.3.1). Next, we will build intuition about stability and �delity of clus-

terings through an illustrative example (Section 4.3.2). Armed with this intuition, we will examine

how a token-level encoding function should handle out-of-vocabulary tokens (Section 4.3.3). Once

we have decided how to handle out-of-vocabulary tokens, we will �nally be ready to explicitly de�ne

the stability and �delity of di�erent possible clusterings. We will propose two types of token-level

robust encodings: connected component encodings (Section 4.3.4), which optimize primarily for sta-

bility, and agglomerative cluster encodings (Section 4.3.5), which optimize for a balance of stability

and �delity. Finally, we will close the loop by specifying some details about the conversion from a

clustering to an encoding (Section 4.3.6).

CHAPTER 4. ROBUST ENCODINGS 53

4.3.1 Encodings as clusters

We construct an encoding function α that encodes x token-wise. Formally, α is de�ned by a token-

level encoding function π that maps each token xi ∈ T to some encoded token π(xi) ∈ ZTok:

α(x) = [π(x1), π(x2), . . . π(xL)]. (4.5)

Since π must be prepared to handle typos, the domain of π is all tokens T , which includes many

strings that are not English words. Naturally, the behavior of π on English words, as opposed to

non-word strings, is of particular importance. De�ne the vocabulary V = {w1, . . . , wN} ⊆ T as

the N most frequent tokens in the corpus distribution pcorp. For simplicity, we call elements of V

words, and tokens that are perturbations of some word typos. We can (trivially) decompose π into

two parts�one function πV that operates on vocabulary words, and a second function πOOV that

operates on all other strings:

π(xi) =

πV (xi) xi ∈ V

πOOV(xi) xi /∈ V
. (4.6)

In Section 4.3.3, we will show how to choose a good πOOV given a choice of πV . The thornier question

is how to choose πV .

Plan for choosing πV . Choosing πV can itself be decomposed into two steps. The �rst, more

involved step is to decide which words in V should be mapped by πV to the same encoded token.

We can view this step as assigning each word in V to one of k clusters C1, . . . , Ck ⊆ V . The second
step is to assign one encoded token to each of these clusters.

The �rst step is critical, as it determines what information about the input is available to the

downstream model g (Section 4.2.1). If π maps too many words to the same encoded token, they

become indistinguishable to g, so it will be unable to classify accurately. At the same time, mapping

some words to the same encoded token greatly helps stability. Section 4.3.4 and Section 4.3.5 will

describe two ways to cluster V .

The second step is comparatively less consequential. In principle we could simply use a one-hot

vector for each cluster. However, since we wish to use a pre-trained language model like BERT as

g, we choose encoded tokens that can be easily fed to BERT. Section 4.3.6 will discuss this choice.

4.3.2 Simple example

Recall the two competing desiderata described in Section 4.2.2: stability and �delity. How do these

interact in the context of typos? Here, we present a simple example that provides intuition as to how

a token-level encoding function can achieve both high stability and high �delity. We will formally

CHAPTER 4. ROBUST ENCODINGS 54

at

aunt

abet

abrupt

about

aut

aet

auet

abot

aboupt

Maximal stability

Maximal fidelity
Balanced

Figure 4.3: Visualization of three di�erent encodings. Vocabulary words (large font, blue) share an
edge if they share a common perturbation (small font, red). The maximal stability cluster (thick
solid line) clusters identically, the maximal �delity clusters (thin dotted line) encodes all words
separately, while the balanced clusters (thin solid line) trade o� the two.

de�ne the stability and �delity of a clustering in Section 4.3.3 and Section 4.3.5.

Consider the �ve words (large font, blue) in Figure 4.3, along with potential typos (small font,

red). We illustrate three di�erent clusterings as boxes around tokens in the same cluster. We

may put all words in the same cluster (thick box), each word in its own cluster (dashed boxes), or

something in between (thin solid boxes). For now, we group each typo with a word it could have

been perturbed from (we will discuss this further in Section 4.3.3).

To maximize stability, we need to place all words in the same cluster. Otherwise, there would

be two words (say �at� and �aunt�) that could both be perturbed to the same typo (�aut�) but are

in di�erent clusters. Therefore, �aut� cannot map to the same encoded token as both the possible

vocabulary words. At the other extreme, to maximize �delity, each word should be in its own

cluster. Both mappings have weaknesses: the stability-maximizing mapping has low �delity since all

words are identically encoded and thus indistinguishable, while the �delity-maximizing mapping has

low stability since the typos of words �aunt�, �abet�, and �abrupt� could all be mapped to di�erent

encoded tokens than that of the original word.

The clustering represented by the thin solid boxes in Figure 4.3 balances stability and �delity.

Compared to encoding all words identically, it has higher �delity, since it distinguishes between some

of the words (e.g., �at� and �about� are encoded di�erently). It also has reasonably high stability,

since only the infrequent �abet� has typos that are shared across words and hence are mapped to

di�erent encoded tokens. This clustering thus represents a desirable compromise between stability

and �delity.

CHAPTER 4. ROBUST ENCODINGS 55

4.3.3 Encoding out-of-vocabulary tokens

Given a �xed clustering of V , we now study how to map out-of-vocabulary tokens, including typos,

to encoded tokens without compromising stability. Once we square away how to handle out-of-

vocabulary tokens for any chosen clustering, we will �nally be in a position to de�ne what makes a

good clustering.

Stability. Stability measures the extent to which typos of words map to di�erent encoded tokens.

We formalize this by de�ning the set of tokens that some typo of a word w could map to, Bπ(w):

Bπ(w) = {π(w̃) | w̃ ∈ B(w)}, (4.7)

where B(w) is the set of allowable typos of w. Since we care about inputs drawn from pcorp, we

de�ne Stab on the clustering C using ρ(w), the normalized frequency of word w based on pcorp:

Stab(C) = −
N∑
i=1

ρ(wi)|Bπ(wi)|. (4.8)

For a �xed clustering, the size of Bπ(w) depends on where πOOV maps typos that w shares with

other words; for example in Figure 4.3, �aet� could be a perturbation of both �at� and �abet�. If we

map the typo to the encoded token of �at�, we increase the size of Bπ("abet") and vice-versa. In

order to keep the size of Bπ(w) smaller for the more frequent words and maximize stability, we map

a typo to the same encoded token as its most frequent neighbor word (in this case �at�). Finally,

when a token is not a typo of any vocabulary words, we encode it to a special encoded token called

OOV.

4.3.4 Connected component encodings

We now present two approaches to generate robust token-level encodings. Our �rst method, con-

nected component encodings, maximizes the stability objective (4.8). Note that Stab is maximized

when for each word w, Bπ(w) contains one encoded token. This is possible only when all words that

share a typo are assigned to the same cluster.

To maximize Stab, de�ne a graph G with all words in V as vertices, and edges between words

that share a typo. Since we must map words that share an edge in G to the same cluster, we de�ne

the cluster Ci to be the set of words in the i-th connected component of G. While this stability-

maximizing clustering encodes many words to the same token (and hence seems to compromise on

�delity), these encodings still perform surprisingly well in practice (see Section 4.4.4).

CHAPTER 4. ROBUST ENCODINGS 56

4.3.5 Agglomerative cluster encodings

Connected component encodings focus only stability and can lead to needlessly low �delity. For

example, in Figure 4.3, �at� and �about� are in the same connected component even though they do

not share a typo. Since both words are generally frequent, mapping them to di�erent encoded tokens

can signi�cantly improve �delity, with only a small drop in stability: recall only the infrequent word

�abet� can be perturbed to multiple encoded tokens.

To handle such cases, we introduce agglomerative cluster encodings, which we construct by trading

o� Stab with a formal objective we de�ne for �delity, Fid. We then approximately optimize this

combined objective Φ using an agglomerative clustering algorithm.

Fidelity objective. Recall from Section 4.2.2 that an encoding has high task-agnostic �delity if it

sends distinct x's drawn from pcorp to di�erent encodings. Now, we wish to approximately quantify

how harmful it is when two words are encoded identically. Returning to our example, suppose �at�

and �abet� belong to the same cluster and thus share an encoded token z. During training, each

occurrence of �at� and �abet� is replaced with z. However, since �at� is much more frequent, the

learned classi�er g will likely treat z similarly to �at� in order to achieve good overall performance.

This leads to mostly normal performance on sentences with �at�, at the cost of performance on

sentences containing the less frequent �abet�.

This motivates the following de�nition: let ~vi be the one-hot indicator vector in R|V | correspond-
ing to word i. In principle ~vi could be a distributed word embedding; we choose indicator vectors

to avoid making any task-speci�c assumptions. We de�ne the encoded token centroid ~µj associated

with words in cluster Cj as follows:

~µj =

∑
wi∈Cj

ρ(wi)~vi∑
wi∈Cj

ρ(wi)
(4.9)

We weight by the frequency ρ to capture the e�ect of training a model using the encodings, as

described above.

Fidelity is maximized when each word has a distinct encoded token. We capture the drop in

standard accuracy due to shared encoded tokens by computing the distance between the original

embeddings of the word its encoded token. Formally, let c(i) be the cluster index of word wi. We

de�ne the �delity objective Fid as follows:

Fid(C) = −
N∑
i=1

ρ(wi)‖~vi − ~µc(i)‖2. (4.10)

Fid is low when when multiple frequent words are in the same cluster, but higher if a cluster has

only one frequent word and other much rarer words.

CHAPTER 4. ROBUST ENCODINGS 57

Final objective. We introduce a hyperparameter γ ∈ [0, 1] that balances stability and �delity.

We approximately minimize the following weighted combination of Stab (4.8) and Fid (4.10):

Φ(C) = γ Fid(C) + (1− γ) Stab(C). (4.11)

As γ approaches 0, we get the connected component clusters from our baseline, which maximize

stability. As γ approaches 1, we maximize �delity by assigning each word to its own cluster.

Agglomerative clustering. We approximately optimize Φ using agglomerative clustering. At a

high level, we start with each word in its own cluster, then iteratively combine the pair of clusters

whose resulting combination increases Φ the most. We repeat until combining any pair of clusters

would decrease Φ.

More speci�cally, we initialize a clustering C by placing each word in its own cluster. We then

examine each pair of clusters Ci, Cj such that there exists an edge between a node in Ci and a node

in Cj , in the graph from Section 4.3.2. For each such pair, we compute the value of Φ if Ci and Cj

were merged to create one cluster Ci ∪Cj . If none of these merge operations decreases Φ, we return

the current clustering. Otherwise, we merge the pair that leads to the greatest reduction in Φ, and

repeat. In summary, the algorithm works as follows:

Algorithm 1 Objective-minimizing agglomerative clustering

1: C ← V

2: for i in range(|V |) do
3: Cnext ← GetBestCombination(C)

4: if C = Cnext then

5: return C

6: end if

7: C ← Cnext

8: end for

9: return C

Now, we simply have to de�ne the procedure we use to get the best combination. Recall our

graph G = (V,E) used to de�ne the connected component clusters; V is the vocabulary of size N ,

and each word in V is a node in the graph. We say two clusters Ci and Cj are adjacent, if there

exists a vi ∈ Ci and a vj ∈ Cj such that (vi, vj) ∈ E. We de�ne a subroutine GetAdjacentPairs

that returns all adjacent pairs of clusters for the current clustering C. Using this, we compute the

best way to merge clusters as follows:

CHAPTER 4. ROBUST ENCODINGS 58

Algorithm 2 GetBestCombination(C)

1: Copt ← C

2: Φopt ← Φ(C)

3: for (Ci, Cj) ∈ GetAdjacentPairs(C) do

4: Ccomb ← Ci ∪ Cj
5: Cnew ← C ∪ Ccomb \ {Ci, Cj} {New clusters}

6: Φnew ← Φ(Cnew)

7: if Φnew < Φopt then

8: Φopt ← Φnew

9: Copt ← Cnew

10: end if

11: end for

12: return Copt

The runtime of our algorithm is O(N2|E|) since at each of a possible N total iterations, we

compute the objective for one of at most |E| pairs of clusters. Computation of the objective can be

reframed as computing the di�erence between Φ and Φnew, where the latter is computed using new

clusters, which can be done in O(N) time.

4.3.6 Mapping clusters to encoded tokens

Finally, recall that in order to fully specify π, we must pick one encoded token to represent each

cluster. We choose to use each cluster's most frequent member word as its associated encoded token.

Formally, for a word w ∈ V in cluster Ci, we de�ne π(w) to be the word w′ in Ci that has highest

frequency ρ(w′). Thus, the set of all encoded tokens is a subset of the vocabulary V . Though

unnecessary when training from scratch, this strategy allows us to leverage the inductive biases of

pre-trained models like BERT (Devlin et al., 2019). In the special case of the out-of-vocabulary

token, we map OOV to the special token [MASK].

4.4 Experiments

4.4.1 Setup

Token-level attacks. The primary attack surface we study is edit distance one (ED1) perturba-

tions. For every word in the input, the adversary is allowed to insert a lowercase letter, delete a

character, substitute a character for any letter, or swap two adjacent characters, so long as the �rst

and last characters remain the same as in the original token. The constraint on the outer characters,

also used by Pruthi et al. (2019), is motivated by psycholinguistic studies (Rawlinson, 1976; Davis,

CHAPTER 4. ROBUST ENCODINGS 59

2003).

Within our attack surface, �the movie was miserable� can be perturbed to �thae mvie wjs misre-

able� but not �th movie as miserable�. Since each token can be independently perturbed, the number

of perturbations of a sentence grows exponentially with its length; even �the movie was miserable�

has 431,842,320 possible perturbations. Our attack surface contains the attack surface used by

Pruthi et al. (2019), which allows ED1 perturbations to at most two words per sentence. Reviews

from SST-2 have 5 million perturbations per example (PPE) on average under this attack surface,

while our attack surface averages 1097 PPE. Our attack surface forces a system robust to subtle

perturbations (e.g., �the moviie waas misreable�) that are not included in smaller attack surfaces.

The fact that we can defend against such a large attack surface is a strength of our approach.

In Section 4.4.7, we additionally consider the internal permutation attacks studied in Belinkov

and Bisk (2018) and Sakaguchi et al. (2017), where all characters, except the �rst and the last, may

be arbitrarily reordered.

Attack algorithms. We consider two attack algorithms: the worst-case attack (WCA) and a

beam-search attack (BSA). WCA exhaustively tests every possible perturbation of an input x to see

any change in the prediction. The attack accuracy of WCA is the true robust accuracy since if there

exists some perturbation that changes the prediction, WCA �nds it. When instances of RobEn have

high stability, the number of possible encodings of perturbations of x is often small, allowing us to

exhaustively test all possible perturbations in the encoding space.3 This allows us to tractably run

WCA. Using WCA with RobEn, we can obtain computationally tractable guarantees on robustness:

given a sentence, we can quickly compute whether or not any perturbation of x that changes the

prediction.

For systems that do not use RobEn, we cannot tractably run WCA. Instead, we run a beam

search attack (BSA) with beam width 5, perturbing tokens one at a time. Since |B(xi)| is very

large for many tokens xi, even the beam search is computationally very expensive. Instead, we run

a beam search where the allowable perturbations are B′(xi) ⊆ B(xi). We de�ne B′(xi) to be four

randomly sampled perturbations from B(xi) when the length of xi is less than �ve, and all deletions

when xi is greater than �ve. Thus, the number of perturbations of each word is bounded above by

min{4, len(xi) − 2}. Even against this very limited attack, we �nd that baseline models have low

accuracy.

Datasets. We use six out of the nine datasets from GLUE (Wang et al., 2019b): SST, MRPC,

QQP, MNLI, QNLI, and RTE, all of which are classi�cation tasks evaluated on accuracy. The

Stanford Sentiment Treebank (SST-2) (Socher et al., 2013) contains movie reviews that are classi�ed

as positive and negative. The Microsoft Research Paraphrase Corpus (MRPC) (Dolan and Brockett,

3When there are more than 10000 possible encodings, which holds for 0.009% of our test examples, we assume the
adversary successfully alters the prediction.

CHAPTER 4. ROBUST ENCODINGS 60

2005) and the Quora Question Pairs dataset (Iyer et al., 2017) contain pairs of input which are

classi�ed as semantically equivalent or not; QQP contains question pairs from Quora, while MRPC

contains pairs from online news sources. MNLI, and RTE are entailment tasks, where the goal is to

predict whether or not a premise sentence entails a hypothesis (Williams et al., 2018). MNLI gathers

premise sentences from ten di�erent sources and elicits hypotheses from crowdworkers, while RTE

gathers examples from previous Recognizing Textual Entailment challenges. QNLI gives pairs of

sentences and questions extracted from the Stanford Question Answering Dataset (Rajpurkar et al.,

2016), and the task is to predict whether or not the answer to the question is in the sentence. We

do not use STS-B and CoLA as they are evaluated on correlation, which does not decompose as

an example-level loss. We additionally do not use WNLI, as most submitted GLUE models cannot

even outperform the majority baseline, and state-of-the-art models are rely on external training data

(Kocijan et al., 2019).

We use the GLUE splits for the six datasets and evaluate on test labels when available (SST-

2, MRPC), and otherwise the publicly released development labels. We tune hyperparameters by

training on 80% of the original train set and using the remaining 20% as a validation set. We then

retrain using the chosen hyperparameters on the full training set.

4.4.2 Baseline models.

We compare with three baseline methods for training NLP models that are robust to typos, as

described below.

Standard training. Our �rst is the standard uncased BERT-base model (Devlin et al., 2019)

�ne-tuned on the training data for each task. We use the default hyperparameters in the pytorch-

transformers repo,4 batch size of 8, and learning rate 2 × 10−5. These same hyperparameters are

also used for all other models that use BERT.

Data augmentation. For our next baseline, we augment the training dataset with four random

perturbations of each example, then �ne-tune BERT-base on this augmented data. Data augmen-

tation has been shown to increase robustness to some types of adversarial perturbations (Ribeiro

et al., 2018; Liu et al., 2019a).

We do not experiment with adversarial training or certi�ably robust training, as attempts to

implement these with a BERT model run into serious obstacles. Adversarial training with black-box

attacks o�ers limited robustness gains over data augmentation (Cohen et al., 2019; Pruthi et al.,

2019). Projected gradient descent (Madry et al., 2018), the only white-box adversarial training

method that is robust in practice, cannot currently be applied to BERT since subword tokenization

4https://github.com/huggingface/pytorch-transformers

https://github.com/huggingface/pytorch-transformers

CHAPTER 4. ROBUST ENCODINGS 61

maps di�erent perturbations to di�erent numbers of tokens, making gradient-based search impossi-

ble. Certi�ably robust training (Huang et al., 2019; Shi et al., 2020) does not work with BERT due

to the same tokenization issue and BERT's use of non-monotonic activation functions, which make

computing bounds intractable. Moreover, the bounds used by certi�ably robust training become

loose as model depth increases, leading to poor robust accuracy (Gowal et al., 2019).

Typo corrector. For our third baseline, we use the most robust method from Pruthi et al. (2019).

In particular, we train a scRNN typo corrector (Sakaguchi et al., 2017) on random perturbations

of each task's training set, using the default settings from the implementation provided by Pruthi

et al. (2019).5 At test time inputs are corrected using the typo corrector, then fed into a downstream

model. We replace any OOV outputted by the typo corrector with the neutral word �a�, as suggested

by Pruthi et al. (2019), and use BERT as our downstream model.

4.4.3 Models with RobEn

We run experiments using our two token-level encodings: connected component encodings (ConnComp)

and agglomerative cluster encodings (AggClust). To form clusters, we use the N = 100, 000 most

frequent words from the Corpus of Contemporary American English (Davies, 2008) that are also in

GloVe (Pennington et al., 2014). For AggClust we use γ = 0.3, which maximizes robust accuracy

on SST-2 development set. For both encodings, the sentence-level encoding α(x) is simply the con-

catenation of all the token-wise encodings. For each dataset, we independently �ne-tune BERT on

the training data, using α(x) as input.

4.4.4 Robustness gains from RobEn

Our main results are shown in Table 4.1. We show all three baselines, as well as models using our

instances of RobEn, ConnComp and AggClust.

Even against the heuristic attack, each baseline system su�ers dramatic performance drops. The

system presented by Pruthi et al. (2019), Typo Corrector + BERT, only achieves 35.3% attack

accuracy, compared to its standard accuracy of 78.2%. BERT and Data Augmentation + BERT

perform even worse. Moreover, the number of perturbations the heuristic attack explores is a tiny

fraction of our attack surface, so the robust accuracy of Typo Corrector + BERT, the quantity we

would like to measure, is likely lower than the attack accuracy.

In contrast, simple instances of RobEn are much more robust. AggClust + BERT achieves

average robust accuracy of 71.3%, 36 points higher than the attack accuracy of Typo Corrector +

BERT. AggClust also further improves on ConnComp in terms of both robust accuracy (by 1.3

points) and standard accuracy (by 2.8 points).

5https://github.com/danishpruthi/Adversarial-Misspellings

https://github.com/danishpruthi/Adversarial-Misspellings

CHAPTER 4. ROBUST ENCODINGS 62

Accuracy System SST-2 MRPC QQP MNLI QNLI RTE Avg

Standard

Baselines

BERT 93.8 87.7 91.3 84.6 88.6 71.1 86.2
Data Aug. + BERT 92.2 84.3 88.7 83.0 87.4 63.5 83.1
Typo Corr. + BERT 89.6 80.9 87.6 75.9 80.5 54.9 78.2
RobEn

ConnComp + BERT 80.6 79.9 84.2 65.7 73.3 52.7 72.7
AggClust + BERT 83.1 83.8 85.0 69.1 76.6 59.2 76.1

Attack

Baselines

BERT 8.7 10.0 17.4 0.7 0.7 1.8 6.6
Data Aug. + BERT 17.1 1.0 27.6 15.4 10.7 1.4 12.2
Typo Corr. + BERT 53.2 30.1 52.0 23.0 32.3 21.3 35.3
RobEn

ConnComp + BERT 80.3 79.4 82.7 62.6 71.5 47.3 70.6
AggClust + BERT 82.1 82.8 83.2 65.3 74.5 52.7 73.4

Robust
RobEn

ConnComp + BERT 80.1 79.4 82.2 61.4 70.5 46.6 70.0
AggClust + BERT 80.7 80.9 81.4 62.8 71.9 49.8 71.3

Table 4.1: Standard, attack, and robust accuracy on six GLUE tasks against ED1 perturbations.
For baseline models we only compute attack accuracy, an upper bound on robust accuracy, since
robust accuracy cannot be tractably computed. Using RobEn, we get robustness guarantees by
computing robust accuracy, which we �nd outperforms the typo corrector in (Pruthi et al., 2019)
by at least 36 points.

Standard accuracy. Like defenses against adversarial examples in other domains, using RobEn

decreases standard accuracy (Madry et al., 2018; Zhang et al., 2019b; Jia et al., 2019). Our standard

accuracy using agglomerative cluster encodings is 10.1 points lower then that of normally trained

BERT. However, to the best of our knowledge, our standard accuracy is state-of-the-art for ap-

proaches that guarantee robustness to a similar family of typos. We attribute this improvement to

RobEn's compatibility with any model.

It may be surprising that we can do so well with an encoding that processes each token in-

dependently, completely ignoring context. Typo correctors rely heavily on context to reconstruct

sentences. It is important to remember that the BERT model that receives encodings as inputs does

make heavy use of context; in principle, such a model could attempt to use that context to infer the

identity of the original word, as a typo corrector would.

Comparison to smaller attack surfaces. We note that RobEn also outperforms existing meth-

ods on their original, smaller attack surfaces. On SST-2, Pruthi et al. (2019) achieves an accuracy of

75.0% defending against a single ED1 typo, which is 5.7 points lower than AggClust's robust accu-

racy against perturbations of all tokens: a superset of the original perturbation set. In Section 4.4.8,

we show our results on adversarial attacks that can only perturb one or a few tokens. AggClust

also outperforms certi�ed training: Huang et al. (2019), which o�ers robustness guarantees to three

CHAPTER 4. ROBUST ENCODINGS 63

Encodings SST-2 MRPC QQP MNLI QNLI RTE Average

ConnComp 86.9 71.6 72.7 45.3 54.6 40.4 61.9
AggClust 65.6 50.0 62.7 35.4 36.6 25.2 45.9

Table 4.2: Percentage of test examples with |Bα(x)| = 1 for each dataset.

Size of Bα

0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

E
xa

m
pl

es

1 2 3–4 5–8 9+

Size of Bα on SST-2

1 2 3–4 5–8 9+

0.2

0.4

0.6

0.8

Size of Bα on RTE

CONNCOMP

AGGCLUST

Figure 4.4: Histogram of |Bα(x)| for SST-2 and RTE. Among all six GLUE datasets, SST-2 has
the highest percentage of inputs x where |Bα(x)| = 1, while RTE has the least. On both datasets,
|Bα(x)| < 9 for most x, and |Bα(x)| = 1 on a plurality of inputs.

character substitution typos (but not insertions or deletions), achieves a robust accuracy of 74.9%

on SST-2. In fact, the robust accuracy of AggClust even exceeds the standard accuracy of the ro-

bustly trained model used in Huang et al. (2019). Certi�ed training requires strong assumptions on

model architecture, which forces Huang et al. (2019) to use simpler model architectures like shallow

CNNs, whereas RobEn can be paired with stronger models like BERT.

4.4.5 Reusable encodings

Each instance of RobEn achieves consistently high stability across our tasks, despite reusing a single

function. We quantify this by measuring the size of Bα(x), the set of encodings that are mapped

to by some perturbation of x, for inputs x drawn from di�erent task distributions. Recall that

when |Bα(x)| is small, robust accuracy can be computed quickly; in particular, when |Bα(x)| = 1,

every perturbation of x maps to the same encoding. Table 4.2 gives the fraction of inputs x for

which |Bα(x)| = 1 for each dataset and each set of encodings (AggClust or ConnComp). For

the AggClust encoding function, |Bα(x)| = 1 for 25% of examples in RTE and 66% in SST-2;

the other four datasets fall between these extremes. As expected, |Bα(x)| = 1 occurs more often

for ConnComp than AggClust. Figure 4.4 shows histograms of |Bα(x)| across test examples in

SST-2 and RTE, and Figure 4.5 shows the other four datasets.

CHAPTER 4. ROBUST ENCODINGS 64

Size of Bα

0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
E

xa
m

pl
es

1 2 3–4 5–8 9+

Sizes of Bα on MRPC

1 2 3–4 5–8 9+

0.2

0.4

0.6

0.8

Sizes of Bα on QQP

CONNCOMP

AGGCLUST

(a) Histogram of |Bα(x)| for MRPC and QQP.

Size of Bα

0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
E

xa
m

pl
es

1 2 3–4 5–8 9+

Sizes of Bα on MNLI

1 2 3–4 5–8 9+

0.2

0.4

0.6

0.8

Sizes of Bα on QNLI

CONNCOMP

AGGCLUST

(b) Histogram of |Bα(x)| for MNLI and QNLI.

Figure 4.5: Histograms of |Bα(x)| for MRPC, QQP, MNLI, and QNLI.

4.4.6 Agglomerative clustering trade-o�

In Figure 4.6, we plot standard and robust accuracy on SST-2 for AggClust encodings, using

di�erent values of γ. Recall that γ = 0 maximizes stability (ConnComp), and γ = 1 maximizes

�delity. At γ = 0, there is a small but nonzero gap between standard and robust accuracy, due to

out-of-vocabulary tokens in the data. Note that the ConnComp construction guarantees perfect

stability for all tokens in V , but it is still possible that if out-of-vocabulary tokens occur in the data,

they might create instability (for example, a typo of an out-of-vocabulary token may also be a typo

of a vocabulary word). As γ increases, both standard accuracy and the gap between standard and

robust accuracy increase. As a result, robust accuracy �rst increases, then decreases.

4.4.7 Internal permutation attacks

RobEn can also be used to defend against internal permutation attacks, as mentioned in Section 4.4.1.

We consider the internal permutation attack surface, where interior characters in a word can be

permuted, assuming the �rst and last characters are �xed. For example, �perturbation� can be

permuted to �peabreuottin� but not �repturbation�. Normally, context helps humans resolve these

typos. Interestingly, for internal permutations it is impossible for an adversary to change the cluster

assignment of both in-vocabulary and out of vocabulary tokens since a cluster can be uniquely

represented by the �rst character, a sorted version of the internal characters, and the last character.

Therefore, using ConnComp encodings, robust, attack, and standard accuracy are all equal. To

attack the clean model, we use the same attack described in Section 4.4.1 for ED1 perturbations,

except we obtain B′(xi) by sampling �ve permutations at random.

Table 4.3 shows our results on this internal permutation attack. For normally trained BERT,

a heuristic beam search attack using internal permutations reduces average accuracy from 86.2%

CHAPTER 4. ROBUST ENCODINGS 65

0.0 0.2 0.4 0.6
Fidelity Objective Weight (γ)

0.7

0.8

0.9

A
cc

ur
ac

y

SST-2 Standard and Robust Accuracies

Standard accuracy
Robust accuracy

Figure 4.6: Standard and robust accuracies on SST-2 with AggClust using di�erent values of
γ. While the gap between standard and robust accuracy increases monotonically, robust accuracy
increases before decreasing.

Accuracy System SST-2 MRPC QQP MNLI QNLI RTE Avg

Standard
BERT 93.8 87.7 91.2 84.3 88.9 71.1 86.2
ConnComp + BERT 93.2 87.7 86.9 75.9 83.4 61.4 81.4

Attack
BERT 28.1 15.9 33.0 4.9 6.2 5.8 15.7
ConnComp + BERT 93.2 87.7 86.9 75.9 83.4 61.4 81.4

Robust ConnComp + BERT 93.2 87.7 86.9 75.9 83.4 61.4 81.4

Table 4.3: Results from internal permutation attacks. Internal permutation attacks bring the average
performance for BERT across the six listed tasks from 86.2 to 15.7. Our ConnComp encodings,
generated using the internal permutation attack surface, achieve a robust accuracy of 81.4, which is
only 4.8 points below standard accuracy.

to 15.7% across our six tasks. Using ConnComp with the internal permutation attack surface, we

achieve robust accuracy of 81.4%.

4.4.8 Constrained adversaries

Using RobEn, since we can tractably compute robust accuracy, it is easy to additionally consider

adversaries that cannot perturb every input token. We may assume that an attacker has a budget

of b ≤ L words that they may perturb as in (Pruthi et al., 2019). Exiting methods for certi�cation

(Jia et al., 2019; Huang et al., 2019) require attack to be factorized over tokens, and cannot give

tighter guarantees in the budget-constrained case compared to the unconstrained setting explored

in previous sections. However, our method lets us easily compute robust accuracy exactly in this

CHAPTER 4. ROBUST ENCODINGS 66

0 1 2 3 4
Allowable token perturbations (b)

0.71

0.72

0.73

0.74

0.75

0.76

R
oc

us
ta

cc
ur

ac
y

Robust Accuracy for Constrained Adversaries

Figure 4.7: Robust accuracy averaged across all tasks based on di�erent adversarial budgets b. b = 0
corresponds to clean performance, and robust performance is reached at b = 4

situation: we just enumerate the possible perturbations that satisfy the budget constraint, and

query the model. Figure 4.7 plots average robust accuracy across the six tasks using AggClust as

a function of b. Note that b = 0 is simply standard accuracy. Interestingly, for each dataset there is

an attack only perturbing 4 tokens with attack accuracy equal to robust accuracy.

4.5 Discussion

At a high level, this chapter shows that discrete intermediate representations can be used to greatly

improve robustness to label-preserving transformations. The fact that our representations are dis-

crete is crucial to guaranteeing robustness for arbitrary downstream model architectures. It is

instructive to contrast with Garg et al. (2018), which also de�ne a notion of robust features but do

so in a continuous space. Their analogue of stability asks that any small perturbation of the input

leads to a correspondingly small perturbation of the feature. However, this alone is not enough to

guarantee robustness when combined with an arbitrary downstream model; one must also require

the downstream model to be not very sensitive to small changes in the features. Discrete encodings

can give the stronger guarantee that intermediate representations remain identical (or remain within

a small set of possible values) when inputs are perturbed. Such a guarantee does imply robustness

for any model that uses this encoding.

NLP has long been concerned with obtaining discrete representations of text, but they are usually

semantic representations or logical forms that look very di�erent from RobEn. For example, Abstract

Meaning Representation (AMR) is a meaning representation that, among other goals, attempts

CHAPTER 4. ROBUST ENCODINGS 67

to canonicalize some sentences with the same or similar meaning into equivalent representations

(Banarescu et al., 2013). Sentences with the same AMRs tend to be similar lexically, as AMR does

not attempt to canonicalize synonyms or in general deeply handle lexical semantics. But AMR does

normalize signi�cant variation in sentence structure and in�ection. These three sentences all have

the same AMR:

• �The boy desires the girl to believe him.�

• �The boy desires to be believed by the girl.�

• �The boy is desirous of the girl believing him.�

We can view AMR as an encoding that is trying to confer robustness not to typos or word substi-

tutions, but to structural transformations.

However, there is a big di�erence: producing an AMR for a sentence is itself a di�cult task,

whereas our encoding functions are easily computable. Note however that an AMR parser does

not necessarily need to be highly accurate in order to help ensure invariance to AMR-preserving

transformations. We just need the AMR parser to be �stable,� which here means that sentences

with the same gold AMR actually get parsed to the same predicted AMR. Note that this can be

true even if the gold AMR and predicted AMR are di�erent. A downstream model could, to some

extent, recover from such errors in AMR parsing, just as our models using RobEn achieve reasonable

accuracies despite using encodings that lose a lot of information about the input.

Chapter 5

Adversarial Evaluation for Reading

Comprehension

The previous two chapters showed that models are overly sensitive to minor label-preserving per-

turbations, namely word substitutions and typos. We saw that even if a system developer knows

ahead of time what sorts of perturbations are permitted at test time, it is non-trivial to ensure

correctness on every perturbation of a given example. This challenge stems from the fact that mul-

tiple perturbations can be applied in combination, leading to exponentially many possible perturbed

inputs.

In this chapter, we shift our focus to a di�erent, complementary type of adversarial example.

We focus on the SQuAD question answering dataset (Rajpurkar et al., 2016), in which systems

answer questions about paragraphs from Wikipedia. As mentioned in Chapter 1, existing SQuAD

models appear very successful by standard average-case evaluation metrics. As of August 2020,

the best system on the SQuAD leaderboard has 95.4% F1 score,1 while human performance is just

91.2%.2 Nonetheless, it seems unlikely that existing systems possess true language understanding

and reasoning capabilities.

The format of SQuAD a�ords us the opportunity to carry out new types of adversarial evaluation.

Chapter 3 and Chapter 4 focused on label-preserving perturbations, However, it is also the case that

changing one word of a paragraph can often alter its meaning drastically. Instead of relying on

meaning-preserving perturbations, we create adversarial examples by adding distracting sentences

to the input paragraph, as shown in Figure 5.1. We automatically generate these sentences so that

they confuse models, but do not contradict the correct answer or confuse humans. For our main

results, we use a simple set of rules to generate a raw distractor sentence that does not answer the

question but looks related; we then �x grammatical errors via crowdsourcing. While adversarial

1At the time when this work was originally published in 2017, the state-of-the-art system had 84.7% F1 score.
2https://rajpurkar.github.io/SQuAD-explorer/

68

https://rajpurkar.github.io/SQuAD-explorer/

CHAPTER 5. ADVERSARIAL EVALUATION FOR READING COMPREHENSION 69

Article: Super Bowl 50
Paragraph: �Peyton Manning became the �rst quarterback ever to
lead two di�erent teams to multiple Super Bowls. He is also the oldest
quarterback ever to play in a Super Bowl at age 39. The past record
was held by John Elway, who led the Broncos to victory in Super Bowl
XXXIII at age 38 and is currently Denver's Executive Vice President
of Football Operations and General Manager. Quarterback Je� Dean
had jersey number 37 in Champ Bowl XXXIV.�
Question: �What is the name of the quarterback who was 38 in Super
Bowl XXXIII?�
Original Prediction: John Elway
Prediction under adversary: Je� Dean

Figure 5.1: An example from the SQuAD dataset. The BiDAF Ensemble model originally gets the
answer correct, but is fooled by the addition of an adversarial distracting sentence (in blue).

word substitutions and typos punish model oversensitivity to small meaning-preserving variations,

our adversarial examples target model overstability�the inability of a model to distinguish a sentence

that actually answers the question from one that merely has many words in common with it.

The two previous chapters also focused on the setting where developers know ahead of time

what perturbations are possible at test time, even if they could not tractably compute the actual

worst-case perturbation. This chapter focuses primarily on the setting where developers do not know

ahead of time how we will generate adversarial examples. By hiding this information, we place a

stronger burden on models to generalize beyond the training distribution. This also makes it easier

to �nd adversarial examples: our main results do not depend on computationally expensive search

and make very few (or no) queries to the model being attacked.

Our experiments test sixteen open-source SQuAD models published in or before 2017, as well as

several released after this. None of these models are robust to the addition of adversarial distracting

sentences. Across sixteen models from 2017 and earlier, adding grammatical adversarial sentences

reduces F1 score from an average of 75% to 36%. For a more recent BERT-based model (Devlin

et al., 2019), F1 score drops from 92% to 61%. On a smaller set of four models, we run additional

experiments in which the adversary adds non-grammatical sequences of English words, causing aver-

age F1 score to drop further to 7%. We conclude that SQuAD requires solving only a very simpli�ed

version of question answering, as high accuracy on SQuAD is possible without understanding the

�ne-grained distinctions targeted by our adversarial distracting sentences.

CHAPTER 5. ADVERSARIAL EVALUATION FOR READING COMPREHENSION 70

5.1 The SQuAD dataset and models

5.1.1 Dataset

The SQuAD dataset (Rajpurkar et al., 2016) contains 107,785 human-generated reading compre-

hension questions about Wikipedia articles. Each question refers to one paragraph of an article, and

the corresponding answer is guaranteed to be a span in that paragraph.

5.1.2 Models

When developing and testing our methods, we focused on two published model architectures: BiDAF

(Seo et al., 2017) and Match-LSTM (Wang and Jiang, 2017). Both are deep learning architectures

that predict a probability distribution over the correct answer. Each model has a single and an

ensemble version, yielding four systems in total.

We also validate our major �ndings on twelve other published models with publicly available test-

time code released in 2017 or earlier: ReasoNet Single and Ensemble versions (Shen et al., 2017c),

Mnemonic Reader Single and Ensemble versions (Hu et al., 2018a), Structural Embedding of De-

pendency Trees (SEDT) Single and Ensemble versions (Liu et al., 2017), jNet (Zhang et al., 2017a),

Ruminating Reader (Gong and Bowman, 2018), Multi-Perspective Context Matching (MPCM) Sin-

gle version (Wang et al., 2016), RaSOR (Lee et al., 2017), Dynamic Chunk Reader (DCR) (Yu et al.,

2016), and the Logistic Regression Baseline (Rajpurkar et al., 2016). We did not run these models

during development, so they serve as a held-out set that validates the generality of our approach.

5.1.3 Standard evaluation

Given a model f that takes in paragraph-question pairs (p, q) and outputs an answer â, the standard

accuracy over a test set Dtest is simply

Acc(f)
def
=

1

|Dtest|
∑

(p,q,a)∈Dtest

v((p, q, a), f),

where v is the F1 score between the true answer a and the predicted answer f(p, q) (see Rajpurkar

et al. (2016) for details).

5.2 Adversarial evaluation

5.2.1 General framework

A model that relies on super�cial cues without understanding language can do well according to aver-

age F1 score, if these cues happen to be predictive most of the time. Weissenborn et al. (2017) argue

CHAPTER 5. ADVERSARIAL EVALUATION FOR READING COMPREHENSION 71

that many SQuAD questions can be answered with heuristics based on type and keyword-matching.

We introduce adversaries that confuse de�cient models by altering test examples. Consider the ex-

ample in Figure 5.1: the BiDAF Ensemble model originally gives the right answer, but gets confused

when an adversarial distracting sentence is added to the paragraph.

We de�ne an adversary A to be a function that takes in an example (p, q, a), optionally with a

model f , and returns a new example (p′, q′, a′). The adversarial accuracy with respect to A is

Adv(f)
def
=

1

|Dtest|
∑

(p,q,a)∈Dtest

v(A(p, q, a, f), f)).

While standard test error measures the fraction of the test distribution over which the model gets

the correct answer, the adversarial accuracy measures the fraction over which the model is robustly

correct, even in the face of adversarially-chosen alterations. For this quantity to be meaningful, the

adversary must satisfy two basic requirements: �rst, it should always generate (p′, q′, a′) tuples that

are valid�a human would judge a′ as the correct answer to q′ given p′. Second, (p′, q′, a′) should

be somehow �close� to the original example (p, q, a).

5.2.2 Semantics-preserving adversaries

In image classi�cation, adversarial examples are commonly generated by adding an imperceptible

amount of noise to the input (Szegedy et al., 2014; Goodfellow et al., 2015). These perturbations

do not change the semantics of the image, but they can change the predictions of models that

are oversensitive to semantics-preserving changes. For language, the direct analogue would be to

paraphrase the input (Madnani and Dorr, 2010). Chapter 3 presented one particular way to generate

semantics-preserving perturbations.

5.2.3 Concatenative adversaries

Instead of relying on paraphrasing, we use perturbations that do alter semantics to build concatena-

tive adversaries, which generate examples of the form (p+s, q, a) for some sentence s, where addition

here denotes string concatenation. In other words, concatenative adversaries add a new sentence to

the end of the paragraph, and leave the question and answer unchanged. Valid adversarial examples

are precisely those for which s does not contradict the correct answer; we refer to such sentences

as being compatible with (p, q, a). We use semantics-altering perturbations to that ensure that s is

compatible, even though it may have many words in common with the question q. Existing models

are bad at distinguishing these sentences from sentences that do in fact address the question, in-

dicating that they su�er from overstability to semantics-altering edits. Table 5.1 summarizes this

important distinction.

The decision to always append s to the end of p is somewhat arbitrary; we could also prepend

CHAPTER 5. ADVERSARIAL EVALUATION FOR READING COMPREHENSION 72

Image Reading
Classi�cation Comprehension

Possible
Input

Tesla moved
to the city of
Chicago in 1880.

Similar
Input

Tadakatsu moved
to the city of
Chicago in 1881.

Semantics Same Di�erent

Model's Considers the two Considers the two
Mistake to be di�erent to be the same

Model Overly Overly
Weakness sensitive stable

Table 5.1: Adversarial examples in computer vision exploit model oversensitivity to small pertur-
bations. In contrast, our adversarial examples work because models do not realize that a small
perturbation can completely change the meaning of a sentence. Images from Szegedy et al. (2014).

it to the beginning, though this would violate the expectation of the �rst sentence being a topic

sentence. Both are more likely to preserve the validity of the example than inserting s in the middle

of p, which runs the risk of breaking coreference links.

Now, we describe two concrete concatenative adversaries. AddSent, our main adversary, adds

grammatical sentences that look similar to the question. In contrast, AddAny adds arbitrary

sequences of English words, giving it more power to confuse models. Figure 5.2 illustrates these two

main adversaries.

5.2.4 AddSent

AddSent uses a four-step procedure to generate sentences that look similar to the question, but do

not actually contradict the correct answer. Similarly to the concept of minimal pairs, these sentences

di�er minimally from a sentence that does actually answer the question. Refer to Figure 5.2 for an

illustration of these steps.

In Step 1, we apply semantics-altering perturbations to the question, in order to guarantee that

the resulting adversarial sentence is compatible. We replace nouns and adjectives with antonyms

from WordNet (Fellbaum, 1998), and change named entities and numbers to the nearest word in

GloVe word vector space3 (Pennington et al., 2014) with the same part of speech.4 If no words

are changed during this step, the adversary gives up and immediately returns the original example.

For example, given the question �What ABC division handles domestic television distribution?�,

3 We use 100-dimensional GloVe vectors trained on Wikipedia and Euclidean distance to de�ne nearby words.
4 We choose the nearest word whose most common gold POS tag in the Penn Treebank (Marcus et al., 1993)

matches the predicted POS tag of the original word, according to CoreNLP. If none of the nearest 100 words satisfy
this, we just return the single closest word.

CHAPTER 5. ADVERSARIAL EVALUATION FOR READING COMPREHENSION 73

Article: Nikola Tesla
Paragraph: "In January 1880, two of Tesla's uncles
put together enough money to help him leave
Gospić for Prague where he was to study.
Unfortunately, he arrived too late to enroll at
Charles-Ferdinand University; he never studied
Greek, a required subject; and he was illiterate in
Czech, another required subject. Tesla did, however,
attend lectures at the university, although, as an
auditor, he did not receive grades for the courses."
Question: "What city did Tesla move to in 1880?"
Answer: Prague
Model Predicts: Prague

Tadakatsu moved the city of
Chicago to in 1881.

Chicago

What city did Tesla move to
in 1880?

What city did Tadakatsu move to
in 1881?

Prague

Adversary Adds: Tadakatsu moved to the city
of Chicago in 1881.
Model Predicts: Chicago

(Step 1)
Mutate

question

(Step 3)
Convert into
statement

(Step 4)
Fix errors with
crowdworkers,
verify resulting
sentences with
other crowdworkers

AddSent

spring attention income getting reached

spring attention income other reached

Adversary Adds: tesla move move other george
Model Predicts: george

Repeat many times

Randomly initialize d words:

AddAny

Greedily change one word

(Step 2)
Generate

fake answer

Figure 5.2: An illustration of the AddSent and AddAny adversaries.

we would change �ABC� to �NBC� (a nearby word in vector space) and �domestic� to �foreign�

(a WordNet antonym), resulting in the question, �What NBC division handles foreign television

distribution?�

In Step 2, we create a fake answer that has the same �type� as the original answer. We de�ne a

set of 26 types, corresponding to NER and POS tags from Stanford CoreNLP (Manning et al., 2014),

plus a few custom categories (e.g., abbreviations), and manually associate a fake answer with each

type. Given the original answer to a question, we compute its type and return the corresponding

fake answer. In our running example, the correct answer was not tagged as a named entity, and has

the POS tag NNP, which corresponds to the fake answer �Central Park.�

In Step 3, we combine the altered question and fake answer into declarative form, using a set

of roughly 50 manually-de�ned rules over CoreNLP constituency parses. For example, �What ABC

division handles domestic television distribution?� triggers a rule that converts questions of the

form �what/which NP1 VP1 ?� to �The NP1 of [Answer] VP1�. After incorporating the alterations and

fake answer from the previous steps, we generate the sentence, �The NBC division of Central Park

handles foreign television distribution.�

The raw sentences generated by Step 3 can be ungrammatical or otherwise unnatural due to the

incompleteness of our rules and errors in constituency parsing. Therefore, in Step 4, we �x errors

CHAPTER 5. ADVERSARIAL EVALUATION FOR READING COMPREHENSION 74

in these sentences via crowdsourcing. Each sentence is edited independently by �ve workers on

Amazon Mechanical Turk, resulting in up to �ve sentences for each raw sentence. Three additional

crowdworkers then �lter out sentences that are ungrammatical or incompatible, resulting in a smaller

(possibly empty) set of human-approved sentences. The full AddSent adversary runs the model f

as a black box on every human-approved sentence, and picks the one that makes the model give the

worst answer. If there are no human-approved sentences, the adversary simply returns the original

example.

A model-independent adversary. AddSent requires a small number of queries to the model

under evaluation. To explore the possibility of an adversary that is completely model-independent,

we also introduce AddOneSent, which adds a random human-approved sentence to the para-

graph. In contrast with prior work in computer vision (Papernot et al., 2017; Narodytska and

Kasiviswanathan, 2017; Moosavi-Dezfooli et al., 2017), AddOneSent does not require any access

to the model or to any training data: it generates adversarial examples based solely on the intuition

that existing models are overly stable.

5.2.5 AddAny

For AddAny, the goal is to choose any sequence of d words, regardless of grammaticality. We use

local search to adversarially choose a distracting sentence s = w1 w2 . . . wd. Figure 5.2 shows an

example of AddAny with d = 5 words; in our experiments, we use d = 10.

We �rst initialize words w1, . . . , wd randomly from a list of common English words.5 Then, we

run 6 epochs of local search, each of which iterates over the indices i ∈ {1, . . . , d} in a random order.

For each i, we randomly generate a set of candidate words W as the union of 20 randomly sampled

common words and all words in q. For each x ∈ W , we generate the sentence with x in the i-th

position and wj in the j-th position for each j 6= i. We try adding each sentence to the paragraph

and query the model for its predicted probability distribution over answers. We update wi to be the

x that minimizes the expected value of the F1 score over the model's output distribution. We return

immediately if the model's argmax prediction has 0 F1 score. If we do not stop after 3 epochs, we

randomly initialize 4 additional word sequences, and search over all of these random initializations

in parallel.

AddAny requires signi�cantly more model access than AddSent: not only does it query the

model many times during the search process, but it also assumes that the model returns a probability

distribution over answers, instead of just a single prediction. Without this assumption, we would

have to rely on something like the F1 score of the argmax prediction, which is piecewise constant and

therefore harder to optimize. �Probabilistic� query access is still weaker than access to gradients, as

is common in computer vision (Szegedy et al., 2014; Goodfellow et al., 2015).

We do not do anything to ensure that the sentences generated by this search procedure do not

5 We de�ne common words as the 1000 most frequent words in the Brown corpus (Francis and Kucera, 1979).

CHAPTER 5. ADVERSARIAL EVALUATION FOR READING COMPREHENSION 75

Match-LSTM Match-LSTM BiDAF BiDAF
Single Ensemble Single Ensemble

Original 71.4 75.4 75.5 80.0

AddSent 27.3 29.4 34.3 34.2
AddOneSent 39.0 41.8 45.7 46.9

AddAny 7.6 11.7 4.8 2.7
AddCommon 38.9 51.0 41.7 52.6

Table 5.2: Adversarial evaluation on the Match-LSTM and BiDAF systems. All four systems can
be fooled by adversarial examples.

contradict the original answer. In practice, the generated �sentences� are gibberish that use many

question words but have no semantic content (see Figure 5.2 for an example).

Finally, we note that both AddSent and AddAny try to incorporate words from the question

into their adversarial sentences. While this is an obvious way to draw the model's attention, we were

curious if we could also distract the model without such a straightforward approach. To this end,

we introduce a variant of AddAny called AddCommon, which is exactly like AddAny except it

only adds common words.

5.3 Experiments

5.3.1 Setup

For all experiments, we measure adversarial F1 score (Rajpurkar et al., 2016) across 1000 randomly

sampled examples from the SQuAD development set.6 Downsampling was helpful because AddAny

and AddCommon can issue thousands of model queries per example, making them very slow. As

the e�ect sizes we measure are large, this downsampling does not hurt statistical signi�cance.

5.3.2 Main experiments

Table 5.2 shows the performance of the Match-LSTM and BiDAF models against all four adver-

saries. Each model incurred a signi�cant accuracy drop under every form of adversarial evaluation.

AddSent made average F1 score across the four models fall from 75.7% to 31.3%. AddAny was

even more e�ective, making average F1 score fall to 6.7%. AddOneSent retained much of the

e�ectiveness of AddSent, despite being model-independent. Finally, AddCommon caused average

F1 score to fall to 46.1%, despite only adding common words.

We also veri�ed that our adversaries were general enough to fool models that we did not use

during development. We ran AddSent on twelve published models from 2017 and earlier for which

6The test set is not publicly available

CHAPTER 5. ADVERSARIAL EVALUATION FOR READING COMPREHENSION 76

Model Original AddSent AddOneSent

ReasoNet (Ensemble) 81.1 39.4 49.8
SEDT (Ensemble) 80.1 35.0 46.5
BiDAF (Ensemble) 80.0 34.2 46.9
Mnemonic (Ensemble) 79.1 46.2 55.3
Ruminating Reader 78.8 37.4 47.7
jNet 78.6 37.9 47.0
Mnemonic (Single) 78.5 46.6 56.0
ReasoNet (Single) 78.2 39.4 50.3
MPCM (Single) 77.0 40.3 50.0
SEDT (Single) 76.9 33.9 44.8
RaSOR 76.2 39.5 49.5
BiDAF (Single) 75.5 34.3 45.7
Match-LSTM (Ensemble) 75.4 29.4 41.8
Match-LSTM (Single) 71.4 27.3 39.0
DCR 69.3 37.8 45.1
Logistic Regression 50.4 23.2 30.4

Table 5.3: AddSent and AddOneSent on all sixteen models, sorted by F1 score on the original
examples.

Original AddSent AddOneSent

Human accuracy 92.6 79.5 89.2

Table 5.4: Human evaluation on adversarial examples. Human accuracy decreases when evaluated
on AddSent mostly due to unrelated errors; the AddOneSent numbers show that humans are
robust to adversarial sentences.

we found publicly available test-time code; we did not run AddAny on these models, as not all

models exposed output distributions. As seen in Table 5.3, no model was robust to adversarial

evaluation; across the sixteen total models tested, average F1 score fell from 75.4% to 36.4% under

AddSent.

It is noteworthy that the Mnemonic Reader models (Hu et al., 2018a) outperform the other

models by about 6 F1 points. We hypothesize that Mnemonic Reader's self-alignment layer, which

helps model long-distance relationships between parts of the paragraph, makes it better at locating

all pieces of evidence that support the correct answer. Therefore, it can be more con�dent in the

correct answer, compared to the fake answer inserted by the adversary.

5.3.3 Human evaluation

To ensure our results are valid, we veri�ed that humans are not also fooled by our adversarial

examples. As AddAny requires too many model queries to run against humans, we focused on

CHAPTER 5. ADVERSARIAL EVALUATION FOR READING COMPREHENSION 77

Model Original AddSent AddOneSent

BERT (Ensemble) 91.5 61.1 70.7
SLQA (Ensemble) 87.9 54.8 64.2
r-net+ (Ensemble) 87.4 52.8 63.4
FusionNet (Ensemble) 85.9 51.4 60.7
SAN (Single) 84.4 46.6 56.5

Table 5.5: AddSent and AddOneSent on �ve SQuAD models released after this work was pub-
lished, sorted by F1 score on the original examples.

AddSent. We presented each original and adversarial paragraph-question pair to three crowdwork-

ers, and asked them to select the correct answer by copy-and-pasting from the paragraph. We then

took a majority vote over the three responses (if all three responses were di�erent, we picked one

at random). These results are shown in Table 5.4. On original examples, our humans are actually

slightly better than the reported number of 91.2 F1 on the entire development set. On AddSent,

human accuracy drops by 13.1 F1 points, much less than the computer systems.

Moreover, much of this decrease can be explained by mistakes unrelated to our adversarial

sentences. Recall that AddSent picks the worst case over up to �ve di�erent paragraph-question

pairs. Even if we showed the same original example to �ve sets of three crowdworkers, chances

are that at least one of the �ve groups would make a mistake, just because humans naturally err.

Therefore, it is more meaningful to evaluate humans on AddOneSent, on which their accuracy

drops by only 3.4 F1 points.

5.3.4 Subsequent models

Since the publication of this work in 2017, state-of-the-art accuracy on SQuAD has reached impres-

sive heights. Nevertheless, these newer models still fare much worse than humans on our adversarial

examples. Table 5.5 shows results for �ve models published after this work: SAN (Liu et al., 2018),

FusionNet (Huang et al., 2018), r-net+ (an improved version of Wang et al. (2017)), SLQA (Wang

et al., 2018), and BERT (Devlin et al., 2019). While BERT comes within 1.1 F1 points of human

accuracy on original examples, it is more than 18 F1 points worse than humans at both AddSent

and AddOneSent.

5.3.5 Analysis

Next, we sought to better understand the behavior of our four main models under adversarial evalua-

tion. To highlight errors caused by the adversary, we focused on examples where the model originally

predicted the (exact) correct answer. We divided this set into �model successes��examples where

the model continued being correct during adversarial evaluation�and �model failures��examples

where the model gave a wrong answer during adversarial evaluation.

CHAPTER 5. ADVERSARIAL EVALUATION FOR READING COMPREHENSION 78

Manual veri�cation. First, we veri�ed that the sentences added by AddSent are actually gram-

matical and compatible. We manually checked 100 randomly chosen BiDAF Ensemble failures. We

found only one where the sentence could be interpreted as answering the question: in this case,

AddSent replaced the word �Muslim� with the related word �Islamic�, so the resulting adversarial

sentence still contradicted the correct answer. Additionally, we found 7 minor grammar errors, such

as subject-verb disagreement (e.g., �The Alaskan Archipelago are made up almost entirely of ham-

sters.�) and misuse of function words (e.g., �The gas of nitrogen makes up 21.8 % of the Mars's

atmosphere.�), but no errors that materially impeded understanding of the sentence.

We also veri�ed compatibility for AddAny. We found no violations out of 100 randomly chosen

BiDAF Ensemble failures.

Error analysis. Next, we wanted to understand what types of errors the models made on the

AddSent examples. In 96.6% of model failures, the model predicted a span in the adversarial

sentence. The lengths of the predicted answers were mostly similar to those of correct answers,

but the BiDAF models occasionally predicted very long spans. The BiDAF Single model predicted

an answer of more than 29 words�the length of the longest answer in the SQuAD development

set�on 5.0% of model failures; for BiDAF Ensemble, this number was 1.6%. Since the BiDAF

models independently predict the start and end positions of the answer, they can predict very long

spans when the end pointer is in�uenced by the adversarial sentence, but the start pointer is not.

Match-LSTM has a similar structure, but also has a hard-coded rule that stops it from predicting

very long answers.

We also analyzed human failures�examples where the humans were correct originally, but wrong

during adversarial evaluation. Humans predicted from the adversarial sentence on only 27.3% of

these error cases, which con�rms that many errors are normal mistakes unrelated to adversarial

sentences.

CategorizingAddSent sentences. We then manually examined sentences generated byAddSent.

In 100 BiDAF Ensemble failures, we found 75 cases where an entity name was changed in the adver-

sarial sentence, 17 cases where numbers or dates were changed, and 33 cases where an antonym of a

question word was used.7 Additionally, 7 sentences had other miscellaneous perturbations made by

crowdworkers during Step 4 of AddSent. For example, on a question about the �Kalven Report�,

the adversarial sentence discussed �The statement Kalven cited� instead; in another case, the ques-

tion, �How does Kenya curb corruption?� was met by the unhelpful sentence, �Tanzania is curbing

corruption� (the model simply answered, �corruption�).

Reasons for model successes. Finally, we sought to understand the factors that in�uence

whether the model will be robust to adversarial perturbations on a particular example. First,

7 These numbers add up to more than 100 because more than one word can be altered per example.

CHAPTER 5. ADVERSARIAL EVALUATION FOR READING COMPREHENSION 79

2 3 4 5 6 7

0
20

40
60

80
10

0

n (size of n−gram)

P
er

ce
nt

 o
f e

xa
m

pl
es

 w
ith

 n
−

gr
am

 m
at

ch

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● Model success
Model failure
ML Single
ML Ensemble
BiDAF Single
BiDAF Ensemble

Figure 5.3: Fraction of model successes and failures on AddSent for which the question has an
exact n-gram match with the original paragraph. For each model and each value of n, successes are
more likely to have an n-gram match than failures.

we found that models do well when the question has an exact n-gram match with the original

paragraph. Figure 5.3 plots the fraction of examples for which an n-gram in the question appears

verbatim in the original passage; this is much higher for model successes. For example, 41.5% of

BiDAF Ensemble successes had a 4-gram in common with the original paragraph, compared to only

21.0% of model failures.

We also found that models succeeded more often on short questions. Figure 5.4 shows the

distribution of question length on model successes and failures; successes tend to involve shorter

questions. For example, 32.7% of the questions in BiDAF Ensemble successes were 8 words or

shorter, compared to only 11.8% for model failures. This e�ect arises because AddSent always

changes at least one word in the question. For long questions, changing one word leaves many others

unchanged, so the adversarial sentence still has many words in common with the question. For short

questions, changing one content word may be enough to make the adversarial sentence completely

irrelevant.

5.3.6 Transferability across models

In computer vision, adversarial examples that fool one model also tend to fool other models (Szegedy

et al., 2014; Moosavi-Dezfooli et al., 2017); we investigate whether the same pattern holds for us.

Examples from AddOneSent clearly do transfer across models, since AddOneSent always adds

CHAPTER 5. ADVERSARIAL EVALUATION FOR READING COMPREHENSION 80

5 10 15 20

0
20

40
60

80
10

0

k (number of words in question)

P
er

ce
nt

 o
f q

ue
st

io
ns

 w
ith

 a
t m

os
t k

 w
or

ds
 (

%
)

●

●

●

●

●

●

●

●
●

●

●
● ● ●

● ●

●

●

●

●

●

●

●

●
●

●
●

● ●
● ● ●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ● ●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

● ●

● Model success
Model failure
ML Single
ML Ensemble
BiDAF Single
BiDAF Ensemble

Figure 5.4: For model successes and failures on AddSent, the cumulative distribution function
of the number of words in the question (for each k, what fraction of questions have ≤ k words).
Successes are more likely to involve short questions.

the same adversarial sentence regardless of model.

Table 5.6 shows the results of evaluating the four main models on adversarial examples gener-

ated by running either AddSent or AddAny against each model. AddSent adversarial examples

transfer between models quite e�ectively; in particular, they are harder than AddOneSent exam-

ples, which implies that examples that fool one model are more likely to fool other models. The

AddAny adversarial examples exhibited more limited transferability between models. For both

AddSent and AddAny, examples transferred slightly better between single and ensemble versions

of the same model.

5.3.7 Training on adversarial examples

Finally, we tried training on adversarial examples, to see if existing models can learn to become

more robust. Due to the prohibitive cost of running AddSent or AddAny on the entire training

set, we instead ran only Steps 1-3 of AddSent (everything except crowdsourcing) to generate a raw

adversarial sentence for each training example. We then trained the BiDAF model from scratch on

the union of these examples and the original training data. As a control, we also trained a second

BiDAF model on the original training data alone.8

The results of evaluating these models are shown in Table 5.7. At �rst glance, training on

8 All previous experiments used parameters released by Seo et al. (2017)

CHAPTER 5. ADVERSARIAL EVALUATION FOR READING COMPREHENSION 81

Model under Evaluation

Targeted Model
Match-LSTM Match-LSTM BiDAF BiDAF

Single Ensemble Single Ensemble

AddSent

Match-LSTM Single 27.3 33.4 40.3 39.1
Match-LSTM Single 31.6 29.4 40.2 38.7
BiDAF Single 32.7 34.8 34.3 37.4
BiDAF Ensemble 32.7 34.2 38.3 34.2

AddAny

Match-LSTM Single 7.6 54.1 57.1 60.9
Match-LSTM Ensemble 44.9 11.7 50.4 54.8
BiDAF Single 58.4 60.5 4.8 46.4
BiDAF Ensemble 48.8 51.1 25.0 2.7

Table 5.6: Transferability of adversarial examples across models. Each row measures performance on
adversarial examples generated to target one model; each column evaluates one (possibly di�erent)
model on these examples.

Training data
Test data Original Augmented

Original 75.8 75.1
AddSent 34.8 70.4
AddSentMod 34.3 39.2

Table 5.7: E�ect of training the BiDAF Single model on the original training data alone (�rst
column) versus augmenting the data with raw AddSent examples (second column).

adversarial data seems e�ective, as it largely protects against AddSent. However, further inves-

tigation shows that training on these examples has only limited utility. To demonstrate this, we

created a variant of AddSent called AddSentMod, which di�ers from AddSent in two ways:

it uses a di�erent set of fake answers (e.g., PERSON named entities map to �Charles Babbage� in-

stead of �Je� Dean�), and it prepends the adversarial sentence to the beginning of the paragraph

instead of appending it to the end. The retrained model does almost as badly as the original one on

AddSentMod, suggesting that it has just learned to ignore the last sentence and reject the fake

answers that AddSent usually proposed. In order for training on adversarial examples to actually

improve the model, more care must be taken to ensure that the model cannot over�t the adversary.

5.4 Discussion

Despite appearing successful by standard evaluation metrics, existing machine learning systems for

reading comprehension perform poorly under adversarial evaluation. Standard evaluation is overly

lenient on models that rely on super�cial cues. In contrast, adversarial evaluation reveals that

CHAPTER 5. ADVERSARIAL EVALUATION FOR READING COMPREHENSION 82

existing models are overly stable to perturbations that alter semantics.

One root cause of these problems is that all questions in SQuAD are guaranteed to be answerable

using the given context paragraph. We can contrast SQuAD with work on recognizing textual entail-

ment (RTE), which has traditionally been motivated by downstream tasks like question answering.

RTE systems must make explicit judgments about whether a hypothesis (e.g., a potential answer

to a question) is entailed by a premise (e.g., a passage) (Dagan et al., 2006; Marelli et al., 2014;

Bowman et al., 2015). In contrast, SQuAD models only need to select the span that seems most

related to the question, compared to other spans. If there are very few spans in the paragraph that

could even plausibly be the right answer, selecting the right span can be much easier than checking

that the answer is actually entailed by the text. This is one way that SQuAD oversimpli�es the

question answering task.

In Rajpurkar et al. (2018), we attempt to address this limitation by creating SQuAD 2.0, a new

version of SQuAD which forces systems to distinguish answerable and unanswerable questions. We

augment SQuAD with unanswerable questions written adversarially by crowdworkers. Crowdworkers

are asked to write unanswerable questions that are on the same topic as a given paragraph and similar

to existing (answerable) questions in SQuAD. These questions are also guaranteed to have a plausible

answer in the paragraph, to prevent simple type-matching heuristics from succeeding. Just like the

adversarial examples in this chapter, these unanswerable questions punish overstability. In fact,

the �rst step of the AddSent pipeline is exactly a method for creating unanswerable questions;

SQuAD 2.0 contains many similar questions, but its reliance on crowdworkers increases diversity.

However, as mentioned in Chapter 1, state-of-the-art models now do very well on SQuAD 2.0, and

the potential for signi�cant accuracy improvements on the SQuAD 2.0 test set seems limited. In

retrospect, we were likely too in�uenced by the intuition of adversarial distractors from this chapter,

and did not focus enough on creating a diverse set of unanswerable questions. When models are

permitted to train on these types of unanswerable questions, as they are in SQuAD 2.0, they stop

being very di�cult to solve.

How can we collect better datasets with unanswerable questions? In SQuAD 2.0, we tried to

collect ones that intuitively seemed most challenging, but did so at the cost of both diversity and

naturalness�real users might not ask these questions. A more natural way to collect unanswerable

questions is to have crowdworkers who cannot see the context passage ask information-seeking

questions, as was done in the QuAC dataset (Choi et al., 2018). Many of these questions are not

answerable based on the passage alone. However, since the question-asker cannot see the passage,

they have no way of knowing if their questions are actually hard to identify as unanswerable. Other

datasets pair existing questions with passages retrieved by a search engine. In the Natural Questions

dataset (Kwiatkowski et al., 2019), questions from Google Search users are paired with retrieved

Wikipedia articles, and annotators read the article to determine if it answers the question. In

principle, one could pair every question with any document that does not answer it, leading to a

CHAPTER 5. ADVERSARIAL EVALUATION FOR READING COMPREHENSION 83

very diverse (but mostly easy) pool of document-question pairs from which the question cannot be

answered. In Rajpurkar et al. (2018), we argued that these kinds of unanswerable questions tend

to be too easy and therefore lead to less challenging datasets. However, our analysis focused on

datasets that have a similar number of answerable and unanswerable questions. As we will argue

in the next chapter, such arti�cial label balance can lead to dramatically in�ated estimates of how

easy a task is.

Chapter 6

Active Learning for Imbalanced

Pairwise Tasks

In the previous chapter, we fooled question answering models by appending adversarial distracting

sentences to the ends of paragraphs. Ideally, these adversarial examples would not only expose

robustness failures, but also guide research on improving model robustness. However, it is unclear

how one would turn these adversarial examples into a meaningful, clearly-de�ned challenge for system

developers. If developers know in advance how the distracting sentences are generated at test time, it

is trivial to achieve high adversarial accuracy merely by adding examples with distracting sentences

to the training data, as shown in Section 5.3.7. However, this clearly does not solve the larger

robustness problem, as models trained in this way do not generalize to other distracting sentences

created in a slightly di�erent way and placed in a di�erent position. On the other hand, if the

developer is not given any knowledge about what might happen at test time, it is very unclear how

to make signi�cant improvements (besides just increasing accuracy on SQuAD overall), since the

space of all possible distracting sentences is extremely large.

Contrast this with Chapter 3 and Chapter 4. In these chapters, we trained systems knowing in

advance what types of perturbations were possible�word substitutions in Chapter 3 and typos in

Chapter 4. However, this knowledge alone did not make achieving high adversarial accuracy trivial.

There were many possible perturbations of every input, and we could not train on all of them,

so we had to �nd non-standard ways to minimize the loss on the worst perturbation. This again

hints at what seems to be missing from Chapter 5: a way to automatically generate many di�erent

distracting sentences.

As it turns out, very large sets of distracting sentences are not so hard to �nd: they arise all

the time in real applications. When a search engine receives a question from a user, it must sift

through all of the written content on the web to �nd a webpage that answers that question. We can

84

CHAPTER 6. ACTIVE LEARNING FOR IMBALANCED PAIRWISE TASKS 85

think of all webpages that do not answer the question as �distractors.� A random distractor (i.e., a

randomly sampled webpage that does not answer the question) will almost always be very easy to

label as irrelevant. But this does not imply that the task is easy! If a system is to rank a relevant

webpage as the top search result, it must rank it higher than every other webpage on the internet.

In other words, it must correctly assign a low relevance score to a distracting webpage that has been

adversarially chosen from among all the webpages in the world.

In this chapter, we study pairwise classi�cation tasks with natural extreme label imbalance (e.g.,

99.99% of examples have the same label). Many well-studied NLP tasks �t within this category.

In question deduplication (Iyer et al., 2017), the vast majority of pairs of questions from an online

forum are not duplicates. In open-domain question answering (Yang et al., 2015; Chen et al., 2017;

Nogueira and Cho, 2019; Lee et al., 2019), almost any randomly sampled document will not answer

a given question. In natural language inference (Dagan et al., 2006; Bowman et al., 2015), random

pairs of sentences from a diverse distribution will almost always have no relation between them, as

opposed to an entailment or contradiction relationship.

We connect this setting to the adversarial settings in previous chapters by noting that when a

binary classi�cation task is extremely imbalanced, achieving high precision requires extremely high

accuracy on the negative examples, since predicting wrong on a very small fraction of negatives is

enough to overwhelm all the positives. We can think of the negatives that are most challenging to a

model as a type of naturally occurring adversarial example: they are worst-case examples from a very

large pool of possible examples. This analogy with adversarial examples is admittedly somewhat

loose. For adversarial perturbations, we wanted to guarantee that no perturbed inputs x′ in some

neighborhood around x are classi�ed incorrectly; to have high precision, we just need not too many

of the negatives to be classi�ed incorrectly, compared to the number of positives. Nonetheless,

these settings do share the property that uniform random sampling�either of perturbations or

of negative examples�cannot measure whether a model has succeeded at the corresponding goal

(either robustness to adversarial perturbations or high precision) without an intractably large number

of samples. Moreover, since it is impractical to train models on extremely imbalanced training

data, evaluating on extremely imbalanced test data forces models to overcome a form of train-test

mismatch.

Compared to studying adversarial perturbations, extremely imbalanced pairwise classi�cation

introduces an important new dimension to the problem of robustness: the choice of how to collect

training data. In the adversarial perturbation setting, we knew at training time exactly what

perturbations would be allowed at test time; no analogous information is available for pairwise

classi�cation. Therefore, to anticipate the most challenging negative examples, we need to have

the right training data. While past work has recognized the importance of label imbalance in NLP

datasets (Lewis et al., 2004; Chawla et al., 2004), many recently released datasets are heuristically

collected to ensure label balance, generally for ease of training. For instance, the Quora Question

CHAPTER 6. ACTIVE LEARNING FOR IMBALANCED PAIRWISE TASKS 86

Pairs (QQP) dataset (Iyer et al., 2017) was generated by mining non-duplicate questions that were

heuristically determined to be near-duplicates. The SNLI dataset had crowdworkers generate inputs

to match a speci�ed label distribution (Bowman et al., 2015). We show that models trained on

heuristically balanced datasets deal poorly with natural label imbalance at test time: they have very

low average precision on realistically imbalanced test data created by taking all pairs of in-domain

utterances.

To jointly study data collection and modeling, we adopt the framework of pool-based active

learning (Settles, 2010), in which system developers have query access to (i.e., the ability to label a

limited subset of) a large pool of unlabeled examples (e.g., unpaired documents and questions, for

open-domain question answering). The goal is to achieve the best possible average precision on a test

dataset that has realistic label imbalance, through a combination of better training data selection

and better modeling. Note that unlike the previous chapter, when we could �x model behavior by

training on distracting sentences, here there is no obvious way to choose the training data. Since we

consider a much broader set of �distractors� (negative examples), the training dataset cannot cover

all of them while preserving label balance, which is important for learning.

Thus, we seek a method of collecting training data that intentionally does not sample from the

test distribution, but nonetheless ensures good generalization to the test distribution. Fortunately,

standard active learning methods have precisely this behavior. In active learning, a model trained

on previously collected data is used to choose new examples to label; this intentionally creates a

mismatch between the training distribution and test distribution, but in a way that actually improves

test error (Settles, 2010; Mussmann and Liang, 2018). We collect balanced and informative training

data using uncertainty sampling, an active learning method that queries labels for examples on

which a model trained on previously queried data has high uncertainty (Lewis and Gale, 1994). To

lower the computational cost of searching for uncertain points, we propose combining active learning

with a BERT embedding model for which uncertain points can be located e�ciently using nearest

neighbor search.

Empirically, we demonstrate that active learning in pairwise classi�cation tasks collects training

data that greatly improves generalization to imbalanced test data, compared with recent benchmark

datasets. When trained on standard, heuristically-collected training data, state-of-the-art models

have only 2.4% average precision on imbalanced versions of both the Quora Question Pairs (QQP)

paraphrasing dataset and WikiQA question answering dataset. In contrast, our BERT embedding

model trained with data collected via active learning achieves average precision to 32.5% on QQP

and 20.1% on WikiQA.

CHAPTER 6. ACTIVE LEARNING FOR IMBALANCED PAIRWISE TASKS 87

6.1 Setting

We study binary classi�cation with an input space X and output space {0, 1}. We assume the label

y is a deterministic function of x, which we write y(x). A classi�cation model pθ yields probability

estimates pθ(y | x) where x ∈ X .
Our setting has two aspects: the way training data is collected via label queries (Section 6.1.1)

and the way we evaluate the model pθ(y | x) by measuring average precision (Section 6.1.2). We

focus on pairwise tasks (Section 6.1.3), which enables e�cient active learning (Section 6.3).

6.1.1 Data collection

In our setting, a system is given an unlabeled dataset Dtrain
all ⊆ X . The system can query an input

x ∈ Dtrain
all and receive the corresponding label y(x). The system is given a budget of n queries to

build a labeled training dataset of size n.

6.1.2 Evaluation

Following standard practice for imbalanced tasks, we evaluate on precision, recall, and average

precision (Lewis, 1995; Manning et al., 2008). A scoring function S : X → R is used to rank

examples x, where an ideal S assigns all positive examples (i.e., x's such that y(x) = 1) a higher

score than all negative examples (i.e., x's such that y(x) = 0). Throughout this chapter, we directly

use the model pθ as the scoring function, i.e., S(x) = pθ(y = 1 | x). Given a test dataset Dtest
all ⊆ X ,

de�ne the number of true positives, false positives, and false negatives of a scoring function S at a

threshold γ as:

TP(S, γ) =
∑

x∈Dtest
all

1[y(x) = 1 ∧ S(x) ≥ γ] (6.1)

FP(S, γ) =
∑

x∈Dtest
all

1[y(x) = 0 ∧ S(x) ≥ γ] (6.2)

FN(S, γ) =
∑

x∈Dtest
all

1[y(x) = 1 ∧ S(x) < γ]. (6.3)

For any threshold γ, de�ne the precision P (S, γ) and recall R(S, γ) of a scoring function S as:

P(S, γ) =
TP(S, γ)

TP(S, γ) + FP(S, γ)
(6.4)

R(S, γ) =
TP(S, γ)

TP(S, γ) + FN(S, γ)
. (6.5)

Let Γ = {S(x) : x ∈ Dtest
all } be the set of all unique scores predicted for some input in the dataset.

CHAPTER 6. ACTIVE LEARNING FOR IMBALANCED PAIRWISE TASKS 88

By sweeping over all values Γ in descending order, we trace out the precision-recall curve. The area

under the precision recall curve, also known as average precision (AP), is de�ned as:

AP(S) =

|Γ|∑
i=1

(R(S, γi)− R(S, γi−1))P(S, γi), (6.6)

where γ0 =∞ and γ1 > γ2 > . . . γ|Γ| and γi ∈ Γ.

Note that high precision requires very high accuracy when the task is extremely imbalanced.

For example, if only one in 10, 000 examples in Dtest
all is positive and 50% precision at some recall is

achieved, that implies 99.99% accuracy.

6.1.3 Pairwise tasks

We focus on �pairwise� tasks, meaning that the input space decomposes as X = X1 × X2. For

instance, X1 could be questions and X2 could be paragraphs for open-domain question answering,

and X1 = X2 could be questions for question deduplication. We create the unlabeled all-pairs

training set Dtrain
all by sampling Dtrain

1 ⊆ X1 and Dtrain
2 ⊆ X2, and de�ne Dtrain

all = Dtrain
1 × Dtrain

2 .

We follow a similar procedure to form the all-pairs test set: Dtest
all = Dtest

1 ×Dtest
2 where Dtest

1 ⊆ X1

and Dtest
2 ⊆ X2. We ensure that the train and test sets are disjoint by ensuring Dtrain

1 ∩Dtest
1 = ∅

and Dtrain
2 ∩Dtest

2 = ∅.
Many pairwise tasks require high average precision on all-pairs test data. A question dedupli-

cation system must compare a new question with all previously asked questions to determine if

a duplicate exists. An open-domain question-answering system must search through all available

documents for one that answers the question. In both cases, the all-pairs distribution is extremely

imbalanced, as the vast majority of pairs are negatives, while standard datasets are arti�cially

balanced.

6.2 Results training on heuristic datasets

In this section, we show that state-of-the-art models trained on two standard pairwise classi�cation

datasets�QQP and WikiQA�do not generalize well to our extremely imbalanced all-pairs test

data. Both QQP and WikiQA were collected using static heuristics that attempt to �nd points

x ∈ X that are relatively likely to be positive. These heuristics are necessary because uniformly

sampling from X is impractical due to the label imbalance: if the proportion of positives is 10−4,

then random sampling would have to label 10,000 examples on average to �nd one positive example.

Standard models can achieve high test accuracy on test data collected with these heuristics, but fare

poorly when evaluated on all-pairs data derived from the same data source (Section 6.2.4). Manual

inspection con�rms that these models often make surprising false positive errors (Section 6.2.5).

CHAPTER 6. ACTIVE LEARNING FOR IMBALANCED PAIRWISE TASKS 89

6.2.1 Evaluation

We evaluate models on both in-distribution test data and our imbalanced all-pairs test data.

In-distribution evaluation. Let Dpos denote the set of all positive examples, and Dstatedneg

denote the set of stated negative examples�negative examples in the original heuristically collected

dataset. We de�ne the stated test dataset Dtest
heur as the set of all positive and stated negative

examples that are contained in Dtest
all . Formally, Dtest

heur = (Dpos ∪Dstatedneg)∩Dtest
all . To evaluate on

Dtest
heur, we use task-speci�c evaluation metrics described in the next section.

All-pairs evaluation. All-pairs evaluation metrics depend on the label of every pair in Dtest
all . We

approximate these labels by imputing (possibly noisy) labels on all pairs using the available labeled

data, as described in the next section.1 In Section 6.2.5, we manually label examples to con�rm our

results from this automatic evaluation.

Computing the number of false positives FP(S, γ) requires enumerating all negative examples in

Dtest
all , which is too computationally expensive with our datasets. To get an unbiased estimate of

FP(S, γ), we could randomly downsample Dtest
all , but the resulting estimator has high variance. We

instead propose a new unbiased estimator that uses importance sampling. We combine counts of

errors on a set of �nearby negative� examples Dtest
near ⊆ Dtest

all , pairs of similar utterances on which we

expect more false positives to occur, and random negatives Dtest
rand sampled uniformly from negatives

in Dtest
all \ Dtest

near. By weighting the number of false positives on Dtest
near and Dtest

all appropriately

and adding them together, we obtain an unbiased estimate of FP(S, γ). Details are provided in

Appendix B.1.

6.2.2 Datasets

Quora Question Pairs (QQP). The task for QQP (Iyer et al., 2017) is to determine whether

two questions are paraphrases. The non-paraphrase pairs in the dataset were chosen heuristically,

e.g., by �nding questions on similar topics. We impute labels on all question pairs by assuming

that two questions are paraphrases if and only if they are equivalent under the transitive closure of

the equivalence relation de�ned by the labeled paraphrase pairs.2 We randomly partition all unique

questions into train, dev, and test splits Dtrain
1 , Ddev

1 , and Dtest
1 , ensuring that no two questions

that were paired (either in positive or negative examples) in the original dataset end up in di�erent

splits. Since every question is trivially a paraphrase of itself, we de�ne Dtrain
all as the set of distinct

pairs of questions in Dtrain
1 , and de�ne Ddev

all and Dtest
all analogously. For in-distribution evaluation,

we report accuracy and F1 score on Dtest
heur, as in Wang et al. (2019b).

1 In practice, precision can be estimated by labeling predicted positives, and recall can be estimated with respect
to a non-exhaustive set of known positives (Harman, 1992; Ji et al., 2011).

2Using the transitive closure increases the total number of positives from 149,263 to 228,548, so this adds many
positives but does not overwhelm the original data.

CHAPTER 6. ACTIVE LEARNING FOR IMBALANCED PAIRWISE TASKS 90

Split Positives
Total
pairs

Ratio
Stated

Negatives
Nearby
Negatives

QQP
Train 124,625 38B 1:300k 132,796 -
Dev 60,510 8.8B 1:150k 61,645 13.1M
Test 43,413 8.5B 1:190k 60,575 12.8M

WikiQA
Train 1,040 56M 1:53k 19,320 -
Dev 140 7.8M 1:56k 2,593 29,511
Test 293 17M 1:57k 5,872 63,136

Table 6.1: Statistics of our QQP and WikiQA splits.

WikiQA. The task for WikiQA (Yang et al., 2015) is to determine whether a question is answered

by a given sentence. The dataset only includes examples that pair a question with sentences from

a Wikipedia article believed to be relevant based on click logs. We impute labels by assuming

that question-sentence pairs not labeled in the dataset are negative. We partition the questions

into Dtrain
1 , Ddev

1 , and Dtest
1 , following the original question-based split of the dataset, and de�ne

Dtrain
2 = Ddev

2 = Dtest
2 to be the set of all sentences in the dataset. For all WikiQA models, we

prepend the title of the source article to the sentence to give the model information about the

sentence's origin, as in Lee et al. (2019).

For in-distribution evaluation, we report two evaluation metrics. Following standard practice,

we report clean mean average precision (c-MAP), de�ned as MAP over �clean� test questions�

questions that are involved in both a positive and negative example in Dtest
heur (Garg et al., 2020).

Restricting to clean examples mostly prunes out questions that are not answered by any sentence

in the dataset. We also report F1 score across all examples in Dtest
heur (a-F1). Unlike c-MAP, a-F1

does evaluate a system's ability to recognize when a question cannot be answered by any available

sentences. Evaluating on all of Dtest
heur introduces more label imbalance: only 6% of Dtest

heur is positive,

while 12% of clean examples in Dtest
heur are positive. The original WikiQA paper advocated a-F1

(Yang et al., 2015), but most subsequent papers do not report it (Shen et al., 2017a; Yoon et al.,

2019; Garg et al., 2020).

Data statistics. Table 6.1 shows statistics for the QQP and WikiQA splits we use. Models in this

section are trained on the stated training dataset Dtrain
heur

def
= (Dpos ∪Dstatedneg)∩Dtrain

all , the set of all

positives and stated negatives in the train split. For all-pairs evaluation, both QQP and WikiQA

have extreme label imbalance: Positive examples make up between 1 in 50,000 (WikiQA) and 1 in

200,000 (QQP) of the test examples.

CHAPTER 6. ACTIVE LEARNING FOR IMBALANCED PAIRWISE TASKS 91

QQP
In-distribution All pairs
Accuracy F1 P@R20 AP

BERT 82.5% 77.3% 3.0% 2.4%
XLNet 83.0% 77.9% 1.7% 1.4%
RoBERTa 84.4% 80.2% 2.5% 2.0%
ALBERT 79.6% 73.0% 3.5% 1.9%

WikiQA c-MAP a-F1 P@R=20 AP

BERT 79.9% 45.9% 6.5% 2.4%
XLNet 80.5% 46.7% 1.0% 1.0%
RoBERTa 84.6% 53.6% 3.4% 2.3%
ALBERT 78.2% 41.8% 0.7% 0.9%

Table 6.2: State-of-the-art Concat models trained on heuristically collected data generalize to test
data from the same distribution, but not to all-pairs data.

6.2.3 Models

We train four state-of-the-art models that use BERT-base (Devlin et al., 2019), XLNet-base (Yang

et al., 2019), RoBERTa-base (Liu et al., 2019b), and ALBERT-base-v2 (Lan et al., 2020), respec-

tively. As is standard, all models receive as input the concatenation of x1 and x2; we refer to these

as concatenation-based (Concat) models. We train on binary cross-entropy loss for 2 epochs on

QQP and 3 epochs on WikiQA, chosen to maximize dev all-pairs AP for RoBERTa. We report the

average over three random seeds for training.

6.2.4 Evaluation results

As shown in Table 6.2, state-of-the-art models trained only on stated training data do well on

balanced in-distribution test data but poorly on the extremely imbalanced all-pairs test data. On

QQP, the best model gets 80.2% F1 on in-distribution test examples.3 However, on all-pairs test

data, the best model can only reach 3.5% precision at a modest 20% recall. On WikiQA, our

best c-MAP of 84.6% is higher than the best previously reported c-MAP without using additional

question-answering data, 83.6% (Garg et al., 2020). However, on all-pairs test data, the best model

gets 6.5% precision at 20% recall. All-questions F1 on in-distribution data is also quite low, with

the best model only achieving 53.6%. Since a-F1 evaluates on a more imbalanced distribution

than c-MAP, this further demonstrates that state-of-the-art models deal poorly with test-time label

3Our QQP in-domain accuracy numbers are lower than those on the GLUE leaderboard, which has accuracies in
the low 90's, due to a more challenging train/test split. First, our training set is smaller (257k examples versus 364k).
Second, our split is more challenging because the model does not see the same questions or even same paraphrase
clusters at training time and test time. Finally, our test set is more balanced (58% negative) than the GLUE QQP dev
set (63% negative; test set balance is unknown). As a sanity check, we con�rmed that our RoBERTa implementation
can achieve 91.5% dev accuracy when trained and tested on the GLUE train/dev split, in line with previously reported
results (Liu et al., 2019b).

CHAPTER 6. ACTIVE LEARNING FOR IMBALANCED PAIRWISE TASKS 92

QQP, ConcatBERT trained on Dtrain

heur

x1: �How do I overcome seasonal a�ective disorder?�
x2 :�How do I solve puberty problem?�

x1: �What will 10000 A.D be like?�
x2 :�Does not introduction of new Rs.2000 notes ease carrying black money in future?�

x1: �Can a person with no Coding knowledge learn Machine learning?�
x2: �How do I learn Natural Language Processing?�

WikiQA, ConcatBERT trained on Dtrain

heur

x1: �where does limestone form?�
x2: �Glacier cave . A glacier cave is a cave formed within the ice of a glacier .�

x1: �what is gravy made of?�
x2: �Amaretto. It is made from a base of apricot pits or almonds, sometimes both.�

Figure 6.1: Examples of con�dent false positives from the all-pairs test distribution for models
trained on examples from the original QQP and WikiQA datasets. Bold highlights non-equivalent
phrases.

imbalance. Compared with a-F1, all-pairs evaluation additionally shows that models make many

mistakes when evaluated on questions paired with less related sentences; these examples should be

easier to identify as negatives, but are missing from Dtrain
heur .

6.2.5 Manual veri�cation of imputed negatives

Since our results depend on automatically imputed negative labels, we manually labeled putative

false positive errors�false positives as de�ned by our imputed labels�to more accurately estimate

precision. We focused on the best QQP model and random seed combination on the development

set, which got 8.2% precision at 20% recall.4 For this recall threshold, we manually labeled 50

randomly chosen putative false positives from Ddev
near, and 50 more from Ddev

rand. We con�rmed that

72% and 92%, respectively, were real false positive errors. Based on these results, we estimate the

true precision of the model to be 9.5%, still close to our original estimate of 8.2%. See Appendix B.2

for details on how we derive this updated precision estimate.

Figure 6.1 shows false positive predictions at 20% recall for the best QQP and WikiQA models.

For QQP, models often make surprising errors on pairs of unrelated questions (�rst two examples),

as well as questions that are somewhat related but distinct (third example). For WikiQA, models

often predict a positive label when something in the sentence has the same type as the answer to

the question, even if the sentence and question are unrelated.

4By manual inspection, QQP had more borderline cases than WikiQA, so we focused on QQP.

CHAPTER 6. ACTIVE LEARNING FOR IMBALANCED PAIRWISE TASKS 93

6.3 Active learning for pairwise tasks

As shown above, training on heuristically collected balanced data leads to low average precision on

all pairs. How can we collect training data that leads to high average precision? We turn to active

learning, in which new data is chosen adaptively based on previously collected data. Adaptivity

allows us to ignore the vast majority of obvious negatives (unlike random sampling) and iteratively

correct the errors of our model (unlike static data collection) by collecting more data around the

model's decision boundary.

6.3.1 Active learning

Active learning is a well-studied class of methods for adaptive data collection (Settles, 2010). The

key observation behind active learning is that it can sometimes be more sample e�cient to sample

training data from a di�erent distribution as the test distribution�thus violating the standard i.i.d.

assumption of supervised learning. A large body of work has shown that the train-test mismatch

induced by standard active learning approaches can actually be bene�cial for generalizing to the test

distribution, both empirically (Settles, 2010; Yang and Loog, 2018) and theoretically (Balcan et al.,

2007; Balcan and Long, 2013; Mussmann and Liang, 2018).

An active learning method takes as input an unlabeled dataset Dtrain
all ⊆ X . Data is collected in

a series of k > 1 rounds. For the ith round, we choose a batch Bi ⊆ Dtrain
all of size ni and observe

the outcome as the labels {(x, y(x)) : x ∈ Bi}. The budget n is the total number of points labeled,

i.e., n =
∑k
i=1 ni. This process is adaptive because we can choose batch Bi based on the labels of

the previous i− 1 batches. Static data collection corresponds to setting k = 1.

Uncertainty sampling. The main active learning algorithm we use is uncertainty sampling (Lewis

and Gale, 1994). Uncertainty sampling �rst uses a static data collection method to select the seed

set B1. For the next k − 1 rounds, uncertainty sampling trains a model on all collected data and

chooses Bi to be the ni unlabeled points in Dtrain
all on which the model is most uncertain. For binary

classi�cation, the most uncertain points are the points where pθ(y = 1 | x) is closest to 1
2 . Note

that a brute force approach to �nding Bi requires evaluating pθ on every example in Dtrain
all , which

can be prohibitively expensive. In balanced settings, it su�ces to choose the most uncertain point

from a small random subset of Dtrain
all (Ertekin et al., 2007); however, this strategy works poorly

in extremely imbalanced settings, as a small random subset of Dtrain
all is unlikely to contain any

uncertain points. In Section 6.3.2, we address this computational challenge with a bespoke model

architecture.

Adaptive retrieval. We also use a related algorithm we call adaptive retrieval, which is like

uncertainty sampling but queries the ni unlabeled points in Dtrain
all with highest pθ(y = 1 | x) (i.e.,

CHAPTER 6. ACTIVE LEARNING FOR IMBALANCED PAIRWISE TASKS 94

pairs the model is most con�dent are positive). Adaptive retrieval can be seen as greedily maximizing

the number of positive examples collected.

6.3.2 Modeling and implementation

We now fully specify our approach by describing our model, how we �nd pairs in the unlabeled pool

Dtrain
all to query, and how we choose the seed set B1. In particular, a key technical challenge is that

the set of training pairs Dtrain
all is too large to enumerate, as it grows quadratically. We therefore

require an e�cient way to locate the uncertain points in Dtrain
all . We solve this problem with a model

architecture CosineBERT that enables e�cient nearest neighbor search (Gillick et al., 2019).

Model. Given input x = (x1, x2), CosineBERT embeds x1 and x2 independently and predicts

pθ(y = 1 | x) based on vector-space similarity. More precisely,

pθ(y = 1 | x) = σ

(
w · eθ(x1) · eθ(x2)

‖eθ(x1)‖‖eθ(x2)‖
+ b

)
, (6.7)

where σ is the sigmoid function, w > 0 and b are learnable parameters, and eθ : X1 ∪ X2 → Rd is a
learnable embedding function. In other words, we compute the cosine similarity of the embeddings

of x1 and x2, and predict y using a logistic regression model with cosine similarity as its only feature.

We de�ne eθ as the �nal layer output of a BERT model (Devlin et al., 2019) mean-pooled across all

tokens (Reimers and Gurevych, 2019).5 Gillick et al. (2019) used a similar model for entity linking.

Finding points to query. Next, we show how to choose the batch Bi of points to query, given

a model pθ(y | x) trained on data from batches B1, . . . , Bi−1. Recall that uncertainty sampling

chooses the points x for which for which pθ(y = 1 | x) is closest to 1
2 , and adaptive retrieval chooses

the points x with largest pθ(y = 1 | x). Since the set of positives is very small compared to the size

of Dtrain
all , the set of uncertain points can be found by �nding points with the largest pθ(y = 1 | x),

thus �ltering out the con�dent negatives, and then selecting the most uncertain from those that

remain.

To �nd points with largest pθ(y = 1 | x), we leverage the structure of our model. Since w > 0,

pθ(y = 1 | x) is increasing in the cosine similarity of eθ(x1) and eθ(x2). Therefore, it su�ces to

�nd pairs (x1, x2) ∈ Dtrain
all that are nearest neighbors in the embedding space de�ned by eθ. In

particular, for each x1 ∈ X1, we use the Faiss library (Johnson et al., 2019) to retrieve a set N(x1)

containing them nearest neighbors in X2, and de�neDtrain
close to be the set of all pairs (x1, x2) such that

x2 ∈ N(x1). We then iterate through Dtrain
close to �nd either the most uncertain points (for uncertainty

5Although WikiQA involves an asymmetric relationship between questions and sentences, we use the same encoder
for both. This is no less expressive than using separate encoders for each, as the set of questions and set of sentences
are disjoint. For asymmetric tasks like NLI where X1 = X2, we would need to use separate encoders for the X1 and
X2.

CHAPTER 6. ACTIVE LEARNING FOR IMBALANCED PAIRWISE TASKS 95

Hyperparameter Value

Learning rate 2× 10−5

Training epochs 2
Weight decay 0
Optimizer AdamW
AdamW Epsilon 1× 10−6

Batch size 16

Table 6.3: Hyperparameter choices for QQP and WikiQA.

sampling) or points with highest cosine similarity (for adaptive retrieval). Note that this method

only requires |Dtrain
1 | + |Dtrain

2 | embedding calls, rather than |Dtrain
1 | · |Dtrain

2 |, the requirement for

jointly embedding all pairs.

Choosing the seed set. To choose the seed set B1, we use the CosineBERT model initialized

with the pre-trained BERT parameters as the embedding eθ and select the n1 pairs with largest

pθ(y = 1 | x). Recall that w > 0, so this amounts to choosing the pairs with highest cosine

similarity.

6.4 Active learning experiments

6.4.1 Experimental details

We collect n1 = 2048 examples in the seed set, and use k = 10 rounds of active learning for QQP and

k = 4 for WikiQA, as WikiQA is much smaller. At round i, we query ni = n1 · (3/2)i−1 new labels.

These choices imply a total labeling budget n of 232,100 for QQP and 16,640 for WikiQA. For both

datasets, n is slightly less than |Dtrain
heur | (257,421 for QQP and 20,360 for WikiQA), thus ensuring a

meaningful comparison with training on heuristic data. The exponentially growing ni helps us avoid

wasting queries in early rounds, when the model is worse, and also makes training faster in the early

rounds. We retrieve m = 1000 nearest neighbors per x1 ∈ X1 for QQP and m = 100 for WikiQA.

We run all active learning experiments with three di�erent random seeds and report the mean.

At each round of active learning, we train for 2 epochs. We train without dropout, as dropout

arti�cially lowers cosine similarities at training time. We apply batch normalization (Io�e and

Szegedy, 2015) to the cosine similarity layer to rescale the cosine similarities, as they often are very

close to 1. We initialize w and b so that high cosine similarities correspond to the positive label,

and constrain w to be nonnegative during training. We use a maximum sequence length of 128

word piece tokens. To compensate for BERT's low learning rate, we increased the learning rate on

the w and b parameters by a factor of 104. Table 6.3 shows all hyperparameters used for training.

Hyperparameters were tuned on the development set of QQP; we found these same hyperparameters

CHAPTER 6. ACTIVE LEARNING FOR IMBALANCED PAIRWISE TASKS 96

Method
QQP WikiQA

P@R20 AP P@R20 AP

Random 4.7% 2.8% 1.3% 1.3%
Stated data 29.3% 15.4% 0.7% 2.2%
Static retrieval 49.2% 25.1% 13.9% 8.2%

Adaptive retrieval 59.1% 32.4% 27.1% 15.1%
Uncertainty 60.2% 32.5% 32.4% 20.1%

Table 6.4: Main results comparing di�erent data collection strategies on all three datasets. The
two active learning methods, adaptive retrieval and uncertainty sampling, greatly outperform other
methods.

Positives Found QQP WikiQA

Random sampling 1 1
Static retrieval 16,422 169
Adaptive retrieval 103,181 757
Uncertainty sampling 87,594 742

Total examples collected 232,100 16,640

Table 6.5: Number of positive points collected by di�erent methods. All methods collect the same
number of total examples (last row).

also worked well for WikiQA, and so we did not tune them separately for WikiQA. In most cases,

we used the default hyperparameters for BERT.

At the end of training, we freeze the embeddings eθ and train the output layer parameters w and b

to convergence, to improve uncertainty estimates for uncertainty sampling. This process amounts to

training a two-parameter logistic regression model. We optimize this using (batch) gradient descent

with learning rate 1 and 10, 000 iterations. When training this model, we normalize the cosine

similarity feature to have zero mean and unit variance across the training dataset. Training this

logistic regression model is very fast compared to running the embedding model.

6.4.2 Main results

We now compare the two active learning methods, adaptive retrieval and uncertainty sampling, with

training on Dtrain
heur and two other baselines. Random sampling queries n pairs uniformly at random,

which creates a very imbalanced dataset. Static retrieval queries the n most similar pairs using

the pre-trained BERT embedding, similar to how we create the seed set in Section 6.3.2. Table 6.4

shows all-pairs evaluation for CosineBERT trained on these datasets. The two active learning

methods greatly outperform other methods: Uncertainty sampling gets 32.5% AP on QQP and

20.1% on WikiQA, while the best static data collection method, static retrieval, gets only 25.1%

AP on QQP and 8.2% AP on WikiQA. Recall from Table 6.2 that ConcatBERT only achieved

CHAPTER 6. ACTIVE LEARNING FOR IMBALANCED PAIRWISE TASKS 97

2.4% AP on both QQP and WikiQA. Uncertainty sampling slightly outperforms adaptive retrieval

on both datasets. On QQP, CosineBERT outperforms ConcatBERT (from Table 6.2) when both

are trained on Dtrain
heur , we hypothesize that the cosine similarity structure helps it generalize better

to pairs of unrelated questions. However, this pattern does not hold for WikiQA, perhaps because

question answering is an asymmetric task and thus not as suited to modeling with cosine similarity,

which is symmetric.

Achieving high precision across all pairs requires collecting both enough positive examples and

useful negative examples. Compared to random sampling and static retrieval, active learning collects

many more positive examples, as shown in Table 6.5. Dtrain
heur contains all positive examples, but

models trained on it still have low AP on all pairs. We conclude that the negative examples in Dtrain
heur

are insu�cient for generalization to all pairs, while active learning chooses more useful negatives.

6.4.3 Manual veri�cation of imputed negatives

As in Section 6.2.5, we manually labeled putative QQP false positives at the threshold where recall

is 20% for CosineBERT trained on either stated data or uncertainty sampling data. For each, we

labeled 50 putative false positives from Ddev
near, and all putative false positives from Ddev

rand (12 for

stated data, 0 for uncertainty sampling).

CosineBERT trained on Dtrain

heur
. 67% (8 of 12) of the putative false positives on Ddev

rand were

actual errors, but only 36% of putative false positives on Ddev
near were errors. This causes us to update

our estimate of development set precision at 20% recall from 28.4% to 41.4%. Overall, this model

makes some more reasonable mistakes than the ConcatBERT model, though its precision is still

not that high.

CosineBERT model with uncertainty sampling. Only 32% of putative false positives from

Ddev
near were real errors, signi�cantly less than the 72% for ConcatBERT trained on Dtrain

heur (p =

7× 10−5, Mann-Whitney U test). Our estimate of development set precision at 20% recall increases

from 55.1% to 79.3%, showing that uncertainty sampling yields a much more precise model than

our imputed labels indicate.

6.4.4 Comparison with strati�ed sampling

Next, we further con�rm that having all the positive examples is not su�cient for high precision.

In Table 6.6, we compare with two variants of strati�ed sampling, in which positive and negative

examples are independently subsampled at a desired ratio (Attenberg and Provost, 2010). First,

we randomly sample positive and negative training examples to match the number of positives and

negatives collected by uncertainty sampling, the best active learning method for both datasets.

Second, we trained on all positive examples and added negatives to match the number of positives

CHAPTER 6. ACTIVE LEARNING FOR IMBALANCED PAIRWISE TASKS 98

Method
QQP WikiQA

P@R20 AP P@R20 AP

Strati�ed sampling, match active learning proportions 35.1% 19.0% 13.2% 8.5%
Strati�ed sampling, all positives 41.6% 22.2% 13.7% 9.1%

Adaptive retrieval 59.1% 32.4% 27.1% 15.1%
Uncertainty 60.2% 32.5% 32.4% 20.1%

Table 6.6: Even though strati�ed sampling has access to oracle information, active learning performs
better by collecting more informative negative examples.

on QQP or match the active learning total budget on WikiQA.6 For QQP, this yielded a slightly

larger dataset than the �rst setting. Note that strati�ed sampling requires oracle information: It

assumes it can sample uniformly from all positives, even though this set is not known before data

collection begins. Nonetheless, strati�ed sampling trails uncertainty sampling by more than 10 AP

points on both datasets. Since strati�ed sampling has access to all positives, active learning must

be choosing more informative negative examples.

6.4.5 Training other models on collected data

QQP Data
CosineBERT ConcatBERT

P@R20 AP P@R20 AP

Stated data 29.3% 15.4% 3.0% 2.4%
Static retrieval 49.2% 25.1% 4.6% 1.9%
Strati�ed sampling 35.1% 19.0% 29.0% 16.4%
Uncertainty sampling 60.2% 32.5% 23.6% 8.9%

Table 6.7: Comparison on QQP of CosineBERT with ConcatBERT. Data collected by active
learning (using CosineBERT) is more useful for training ConcatBERT than stated data or static
retrieval data. Strati�ed sampling here matches the label balance of the uncertainty sampling data.

Data collected with active learning and CosineBERT is useful even when training a di�erent

model architecture. As shown in Table 6.7, ConcatBERT trained on data collected with uncer-

tainty sampling gets 8.9% AP on QQP, compared to 2.4% with stated data. However its performance

is lower than 32.5%, the AP of CosineBERT with uncertainty sampling. ConcatBERT performs

best with strati�ed sampling; recall that this is not a comparable data collection strategy in our

setting, as it requires oracle knowledge. CosineBERT outperforms ConcatBERT in all training

conditions; we hypothesize that the cosine similarity structure helps it generalize more robustly to

pairs of unrelated questions. However, CosineBERT trained on stated data does not do as well on

WikiQA, as seen in Table 6.4.

6This aligns better with the original WikiQA dataset, which has many more negatives than positives.

CHAPTER 6. ACTIVE LEARNING FOR IMBALANCED PAIRWISE TASKS 99

6.4.6 Learning curves and data e�ciency

0 50k 100k 150k 200k
Data collected

0

5

10

15

20

25

30

35
Av

er
ag

e
pr

ec
isi

on
 (%

)
AP on QQP dev

Uncertainty sampling
Static retrieval

(a) Average precision

0 50k 100k 150k 200k
Data collected

0

10

20

30

40

50

60

Pe
rc

en
t p

os
iti

ve

Positives collected on QQP
Uncertainty sampling
Static retrieval

(b) Positives collected

Figure 6.2: Uncertainty sampling compared with matching amounts of static retrieval data on QQP.
(a) Average precision is higher for uncertainty sampling. Recall that uncertainty sampling uses static
retrieval at the �rst iteration to create the seed set. (b) Percent of all collected data that is positive.
Adaptivity helps uncertainty sampling collect more positives.

Adaptivity is crucial for getting high AP with less labeled data. In Figure 6.2a, we plot av-

erage precision on the QQP dev set for our model after each round of uncertainty sampling. For

comparison, we show a model trained on the same amount of data collected via static retrieval, the

best-performing static data collection method. Static retrieval gets 21.9% dev AP on QQP with

the full budget of 232,100 examples. Uncertainty sampling achieves a higher dev AP of 22.6% after

collecting only 16,640 examples, for a 14× data e�ciency improvement. A big factor for the success

of uncertainty sampling is its ability to collect many more positive examples than static retrieval,

as shown in Figure 6.2b. Static retrieval collects fewer positives over time, as it exhausts the set

of positives that are easy to identify. However, uncertainty sampling collects many more positives,

especially after the �rst round of training, because it improves its embeddings over time.

6.4.7 E�ect of seed set

Our method is robust to choice of the initial seed set for uncertainty sampling. We consider using

stated data as the seed set, instead of data chosen via static retrieval. As shown in Figure 6.3, seeding

with stated data performs about as well as static retrieval in terms of AP. Since the stated data arti�-

cially overrepresents positive examples, the model trained on stated data is initially miscalibrated�

the points it is uncertain about are actually almost all negative points. Therefore, uncertainty

sampling initially collects very few additional positive examples. Over time, adaptively querying

CHAPTER 6. ACTIVE LEARNING FOR IMBALANCED PAIRWISE TASKS 100

0 50k 100k 150k 200k
Data collected

0

5

10

15

20

25

30

35

Av
er

ag
e

pr
ec

isi
on

 (%
)

AP on QQP dev

Seed with retrieval
Seed with stated data

(a) Average precision

0 50k 100k 150k 200k
Data collected

0

10

20

30

40

50

60

Pe
rc

en
t p

os
iti

ve

Positives collected on QQP
Seed with retrieval
Seed with stated data

(b) Positives collected

Figure 6.3: Uncertainty sampling on QQP using di�erent seed sets. Left: Seeding with stated data
(one run) does similarly to seeding with retrieval (mean over three runs). Right: Seeding with stated
data makes the model poorly calibrated�points it is uncertain about are initially very unlikely to
be positive. However, over time the model corrects this behavior.

new data helps correct for this bias.

6.5 Discussion

In this chapter, we have studied how to collect training data that enables generalization to extremely

imbalanced test data in pairwise tasks. State-of-the-art models trained on standard, heuristically

collected datasets have very low average precision when evaluated on imbalanced test data, while

active learning leads to much better average precision.

Our work underscores the important role of the training dataset for improving generalization:

carefully constructed training data can help models generalize beyond the training distribution.

The training dataset created by active learning does not match the extremely imbalanced test

distribution, but nonetheless greatly improves generalization to this distribution. Understanding

how to best collect training data remains an important open problem. It is known that pairwise

datasets collected heuristically often have artifacts, or patterns that enable classi�cation on that

dataset but are not generally correct. Zhang et al. (2019a) found that the frequency of questions

in QQP leaks information about the label; our all-pairs setting avoids these artifacts, as every test

utterance appears in the same number of examples. In the ROCstories dataset (Mostafazadeh et al.,

2016), systems are given the beginning of a short story and must choose the correct �nal sentence

over a distracting sentence. Schwartz et al. (2017) showed that it was often possible to identify the

distracting sentence without looking at the rest of the story, based on stylistic features alone. Poliak

CHAPTER 6. ACTIVE LEARNING FOR IMBALANCED PAIRWISE TASKS 101

et al. (2018) and Gururangan et al. (2018) both showed that models can achieve surprisingly high

accuracies on SNLI by looking only at the hypothesis sentence, ignoring the premise. When such

artifacts exist in the training data, models are encouraged to learn these dataset-speci�c patterns,

rather than more general strategies for the underlying task.

In this chapter, we only conduct retrospective active learning experiments�we simulate data

collection by hiding labels that were collected or imputed ahead of time, rather than actually querying

humans. A natural next step would be to use active learning to actually collect a dataset for an

extremely imbalanced task. One concern is that data collected with active learning tends to be

most e�ective when used to train the same model architecture used during active learning (Lowell

et al., 2019). We saw this occur in Section 6.4.5, where data collected using CosineBERT was

more e�ective for training CosineBERT than training ConcatBERT. Reducing this dependence

on model architecture is an important direction for future work. One potential idea is to draw on

prior work that combines active learning with self-training, in which a learner's noisy predictions

are treated as ground truth for training (Fathi et al., 2011; Siméoni et al., 2019). We could impute

labels on unlabeled examples using predictions from the model used for active learning; this reduces

the bias in the training data towards examples that model was uncertain about, at the cost of some

label noise.

Finally, we return to the topic of robustness. The goal of achieving high precision on extremely

imbalanced data fundamentally introduces a robustness challenge. Machine learning models learn

best from balanced data, but the test set is imbalanced, so there is inherent train-test mismatch.

Moreover, high precision requires models to be extremely accurate on negative examples; in this

way, precision is similar to an adversarial metric that evaluates accuracy on worst-case negative

examples.

Compared to other tests of robustness, evaluating on extremely imbalanced all-pairs data has

several advantages. Our examples are realistic and natural: all individual utterances in the test data

are real utterances, and retrieval and deduplication applications require high precision on the all-

pairs distribution. In contrast, previous chapters studied adversarial perturbations and distracting

sentences, which created unnatural inputs and were less tied to a real-world data distribution.

Stress tests (Glockner et al., 2018; Naik et al., 2018; McCoy et al., 2019) measure accuracy on

speci�c phenomena, but the examples used are often not very diverse. Our all-pairs data re�ects

the underlying diversity of the available questions and sentences. Finally, since we allow querying

the label of any training example, generalization to our test data is achievable. This makes our

setting a much more fair extrapolation challenge (Geiger et al., 2019) compared to out-of-domain

generalization (Levy et al., 2017; Yogatama et al., 2019; Talmor and Berant, 2019), where it is

unclear how well models should be expected to perform.

Chapter 7

Conclusion

In this thesis, we have studied several di�erent ways that state-of-the-art NLP systems fail to be

robust. Despite high in-distribution accuracy, they are overly sensitive to small perturbations like

meaning-preserving word substitutions and typos. At the same time, they also rely too heavily on

simple heuristics that �t the training data, which makes them insu�ciently sensitive to meaning-

altering perturbations, and leads to low precision in realistic pairwise classi�cation settings. To

counter these �aws, we have developed new techniques that improve the robustness of neural NLP

systems. Certi�ably robust training yields neural models that are provably robust to worst-case

perturbations. Robust encodings can be composed with neural models to build accurate models

that are invariant to perturbations. Active learning with neural embedding models collects training

data that enables better generalization to imbalanced test settings.

In Chapter 3, we ensured robustness to meaning-preserving word-level perturbations. Since many

words in a sentence can be perturbed independently, there is an exponentially large number of total

perturbations that are possible for every sentence. Ensuring correctness on all these perturbations

therefore requires some computationally tractable way of reasoning about this combinatorial space.

Taking advantage of the modular nature of neural networks, we use interval bound propagation to

compute an upper bound on the loss that the worst possible perturbation can cause. By backprop-

agating this bound on the worst-case loss through the parameters of a neural model, we can train

the model in a certi�ably robust way. At test time, the resulting model can e�ciently produce

certi�cates of robustness to worst-case word substitutions.

In Chapter 4, we developed a di�erent approach to ensuring robustness to perturbations that

is reusable across di�erent tasks and can be combined with any neural NLP model architecture.

Instead of changing the way we train models, we create a robust encoding function that enforces

invariance to perturbations. The quality of a robust encoding function is de�ned by two quantities,

stability and �delity. Stability measures the extent to which a robust encoding function maps

all perturbations of an input to the same encoding or small set of encodings; this helps enforce

102

CHAPTER 7. CONCLUSION 103

perturbation invariance in models that predict based on encodings, and also makes it possible to

exactly compute robust accuracy. Fidelity measures the extent to which a robust encoding function

retains enough information about the input to be useful for prediction; while �delity is inherently a

task-speci�c notion, we �nd that we can approximate �delity reasonably well in a task-independent

manner. For the speci�c case of defending against adversarial typos, we construct an encoding

function by clustering vocabulary words to optimize a linear combination a stability objective and

�delity objective. This encoding function maps sequences of tokens to sequences of words, so we can

compose it with state-of-the-art pre-trained models like BERT, leading to high robust accuracy on

adversarial typos.

In Chapter 5, we studied the reverse problem: models also tend to be insu�ciently sensitive

to small changes that alter meaning. Models that achieve high accuracy on SQuAD are easily

fooled by distracting sentences that do not answer the question, but merely have many words in

common with it. We can create these distracting sentences in a straightforward rule-based manner

by altering the question and transforming it into a declarative sentence. We can also create gibberish

distracting text that fools models to an even greater extent. These adversarial examples demonstrate

that models rely heavily on heuristic patterns to succeed at SQuAD, rather than really performing

reading comprehension.

Finally in Chapter 6, we studied what could be considered an extreme version of the problem of

adversarial distracting sentences. We looked at extremely imbalanced pairwise classi�cation tasks,

in which positive examples may be outnumbered by negative examples 10, 000 : 1 or more. Models

trained on heuristically collected balanced datasets are not prepared for all the di�erent negative

examples that arise in the real imbalanced distribution, and thus achieve very low precision. We

address this problem by improving data collection: we use active learning to build a balanced

training dataset that includes both enough positives and enough challenging negative examples.

Models trained on this training data generalize much better to extreme label imbalance at test time,

despite the mismatch between the training and test distributions.

7.1 Future directions

Here we discuss some additional directions for future work. As discussed in the introduction, ro-

bustness is not one-dimensional but encompasses a wide range of generalization capabilities. We

highlight a few important aspects of robustness and generalization for which progress seems within

reach.

7.1.1 Systematicity and consistency

In the introduction, we discussed how our study of robustness was motivated in part by neural mod-

els' lack of systematicity. While insensitivity to synonym substitutions is necessary for systematicity,

CHAPTER 7. CONCLUSION 104

it is of course not su�cient. One natural extension is to go beyond label-preserving transformations

to transformations of an input x that cause a corresponding, regular transformation in output y. My

prior work explored this idea in the context of semantic parsing�the task of mapping utterances

to logical forms (Jia and Liang, 2016). We introduced data recombination, in which simple high-

precision rules are used to combine multiple existing training examples in a compositional manner.

We showed that training on these new examples helped neural semantic parsers generalize better

(in a standard, i.i.d. sense). These examples could also be used to evaluate compositional general-

ization. SCAN (Lake and Baroni, 2018) is a synthetic dataset that tests systematic generalization,

such as generalization to longer sequences than were seen at test time. Models can only succeed by

systematically combining the meaning of shorter sequences seen at training time.

Recall that systematicity concerns sentences that share lexicosyntactic features. Sentences can

also be related logically, and we should demand that systems process such sentences in a logically

consistent way. Ribeiro et al. (2019) automatically generate tests of internal consistency for question

answering systems. For example, a visual question answering system that answers �1� to the question

�How many birds?� must answer �yes� to the question �Is there 1 bird?� when given the same image.

Standard models do not always answer these questions consistently. The GQA visual question

answering dataset (Hudson and Manning, 2019) also evaluates model consistency. In GQA, questions

are synthetically generated and associated with logical forms, which enables the construction of a set

of entailed question-answer pairs for each question-answer pair in the dataset. When models answer

a GQA question correctly, they sometimes contradict themselves when answering these entailed

questions. Fixing these inconsistencies could go a long way in making system predictions more

believable.

7.1.2 Side-e�ects of adversarial robustness

As we saw in Chapter 3 and Chapter 4, improving adversarial robustness often comes at the cost of

standard accuracy. Some recent work has explained this trade-o� theoretically and proposed �xes

using unlabeled data (Carmon et al., 2019; Uesato et al., 2019; Naja� et al., 2019; Raghunathan

et al., 2020). However, it remains unclear exactly how adversarially robust models di�er in their

generalization tendencies, compared with normally trained models. For images, Yin et al. (2019)

observed that models trained to ignore high-frequency perturbations (e.g., pixel-level perturbations)

learned to be more sensitive to low-frequency patterns in the dataset. This leads to improved robust-

ness to other high-frequency perturbations, but reduced robustness to low-frequency perturbations.

Thus, improving robustness to one type of perturbation may bias the model towards relying on other

features which still may not be the �right� features to learn.

We anecdotally observed some similar behavior while working on certi�ably robust training

(Chapter 3). Recall that the adversary in Chapter 3 can only perturb words that occur in its 50, 000

word vocabulary. This is an arti�cial quirk of the attack surface stemming from the fact that the

CHAPTER 7. CONCLUSION 105

word vectors of Mrk²i¢ et al. (2016), which were used to de�ne the attack surface, only included

these 50, 000 words. In earlier experiments, we allowed the classi�er to look at every word in the

input, including words outside of the adversary's vocabulary. This drove the classi�er to rely heavily

on these �un-perturbable� words�for the IMDB dataset, these include movie and actor names. It

is possible to make reasonable guesses of sentiment based on these names, as movie identity can

be predictive of rating, but these patterns are much less generalizable than using actual sentiment

markers. Luckily, we eventually discovered this problem because the IMDB test set uses a di�erent

set of movies than the training set, so the robustly trained model had much worse test accuracy than

development set accuracy (we had been using a random subset of the original training set as our

development set). Ultimately, we restricted the classi�er to only look at words in the adversary's

vocabulary, which eliminated this behavior. Still, this is a cautionary tale that optimizing for any

speci�c type robustness can have unintended consequences. More work is needed to fully understand

how inductive biases shift when optimizing for di�erent types of adversarial robustness.

7.1.3 Adversarial data collection

Dataset creation often has an adversarial component: good datasets drive progress by presenting

challenges not solved by existing techniques. From a large pool of possible data distributions, dataset

designers often try to create datasets that both present an important problem and stump existing

models. Model designers respond by proposing new models that can handle these examples. This

back-and-forth plays out on the timescale of months to years. We can view adversarial examples

as a way to speed up this loop. When someone proposes a new model, we can immediately search

for adversarial perturbations on which it errs. The speci�c perturbations might be di�erent from

the ones that fooled a previous model, even if the set of possible perturbations we consider does not

change.

A less automated approach to generating adversarial examples could rely on humans to create

more diverse challenges, while still maintaining reasonably fast iteration cycles. Recent work has

explored adversarial human-in-the-loop dataset creation in which humans are encouraged to write

examples that an existing system gets wrong (Ettinger et al., 2017; Wallace et al., 2019b; Dua et al.,

2019). Nie et al. (2020) takes this a step further by running multiple rounds of data collection, at each

step soliciting examples that fool a model trained on data from previous rounds. These examples

turn out to be challenging even for powerful models introduced later, notably GPT-3 (Brown et al.,

2020). This adversarial data collection process bears a strong resemblance to active learning, which

also alternates between model training and data collection. By asking humans to write examples,

Nie et al. (2020) bene�t from human creativity, but also may miss classes of examples that humans

would not �nd; pool-based uncertainty sampling o�ers a complementary way to search for examples

that challenge an existing model.

CHAPTER 7. CONCLUSION 106

7.1.4 Knowing when to abstain

In this thesis, we have not tackled the challenge of domain generalization, in which training data

and test data come from di�erent sources. While domain generalization is important, especially in

real-world settings where available training data and user inputs may di�er signi�cantly, it is not

always clear that the training data has enough information to make such generalization achievable.

Instead of trying to always predict correctly out-of-domain, a seemingly more attainable goal

is out-of-domain selective prediction, in which models should make a prediction when they are

con�dent and abstain otherwise (Chow, 1957; El-Yaniv and Wiener, 2010; Geifman and El-Yaniv,

2017). For applications like question answering, selective prediction is important because returning

a wrong answer can be much more harmful than refraining from answering. If users provide out-

of-domain inputs, models can maintain high accuracy by abstaining more often. In Kamath et al.

(2020), we study out-of-domain selective prediction for question answering: we train models on

SQuAD and develop methods to decide when to abstain when tested on a mixture of examples from

SQuAD and other out-of-domain question answering datasets. While we improve over standard

baselines, we �nd signi�cant room for improvement. Models tend to be overcon�dent on out-of-

domain inputs�they don't know that they don't know. Standard methods for selective prediction

are also not adversarially robust: models are often very con�dent in their wrong predictions on

adversarial examples (Goodfellow et al., 2015).

7.1.5 Solving synthetic tasks

The steps we have taken to improve robustness of NLP systems still leave us far from the ultimate

goal of solving general tasks. How should we even begin to think about solving tasks and not

datasets? Solving any task using supervised learning almost certainly requires both better modeling

and data collection, which motivates the adoption of a setting like Chapter 6. However, for the

datasets in that chapter, models are still far from achieving perfect precision, and noise from our

imputed labels may put a ceiling on how well any model can do. Instead, we believe a promising

direction is to jointly explore data collection and modeling in the context of synthetic language tasks,

in which we can always query noiseless gold labels. Such tasks could include synthetic datasets for

question answering (Weston et al., 2015; Hudson and Manning, 2019), instruction following (Lake

and Baroni, 2018), or natural language inference (Geiger et al., 2019; Goodwin et al., 2020). While

techniques that solve synthetic language tasks are by no means guaranteed to solve natural language

tasks, understanding what it takes to fully solve any language-like task seems to be an important

stepping stone. Synthetic datasets do often present many challenges that are both necessary for

natural language understanding and di�cult for standard neural models, such as handling highly

structured and compositional utterances (Lake and Baroni, 2018; Goodwin et al., 2020). Further

research is needed to understand best principles for creating synthetic datasets so that �ndings on

the synthetic datasets lead to real progress on natural language tasks.

CHAPTER 7. CONCLUSION 107

7.2 Final thoughts

In his 2013 paper On Our Best Behavior, Hector Levesque memorably diagnoses the �eld of AI with

a chronic case of �serial silver bulletism,� de�ned as �the tendency to believe in a silver bullet for AI,

coupled with the belief that previous beliefs about silver bullets were hopelessly naïve� (Levesque,

2013). Deep learning is the newest silver bullet hopeful, and it warrants both our praise and our

skepticism: praise for what it has already achieved, and skepticism that it will achieve the rest. The

failure of state-of-the-art deep learning models to generalize robustly provides a foundation for this

skepticism.

Just as our praise should not preclude our skepticism, neither should our skepticism con�ne us to

the business of naysaying. We have endeavored throughout this thesis to present not only problems

with existing systems but also solutions that harness the strengths of deep learning while shoring

up its weaknesses. It is precisely because current systems work so well that we may be so bold as

to aim for the loftier goal of adversarial robustness, encouraged by but not content with standard

benchmark results.

Above all, while we have advocated for adversarial evaluation methods, we have done so without

any adversarial intent. Probing the weaknesses of current systems is not a malicious endeavor but

a scienti�c�and, given the increasing prevalence of NLP models in production settings, societal�

necessity. Only once we understand the �aws of existing systems can we make responsible decisions

about how they should be used. Only once we understand the problems on which current methods

struggle can we hope to make progress on building systems that truly understand natural language.

Bibliography

M. Alzantot, Y. Sharma, A. Elgohary, B. Ho, M. Srivastava, and K. Chang. 2018. Generating natural

language adversarial examples. In Empirical Methods in Natural Language Processing (EMNLP).

G. Angeli and C. D. Manning. 2014. Naturalli: Natural logic inference for common sense reasoning.

In Empirical Methods in Natural Language Processing (EMNLP).

A. Athalye, N. Carlini, and D. Wagner. 2018. Obfuscated gradients give a false sense of security:

Circumventing defenses to adversarial examples. In International Conference on Machine Learning

(ICML).

J. Attenberg and F. Provost. 2010. Why label when you can search? alternatives to active learning

for applying human resources to build classi�cation models under extreme class imbalance. In

International Conference on Knowledge Discovery and Data Mining (KDD).

D. Bahdanau, K. Cho, and Y. Bengio. 2015. Neural machine translation by jointly learning to align

and translate. In International Conference on Learning Representations (ICLR).

M. Balcan, A. Broder, and T. Zhang. 2007. Margin based active learning. In International Conference

on Computational Learning Theory.

M. Balcan and P. Long. 2013. Active and passive learning of linear separators under log-concave

distributions. In Conference on Learning Theory (COLT).

L. Banarescu, C. B. S. Cai, M. Georgescu, K. Gri�tt, U. Hermjakob, K. Knight, P. Koehn,

M. Palmer, and N. Schneider. 2013. Abstract meaning representation for sembanking. In 7th

Linguistic Annotation Workshop and Interoperability with Discourse.

Y. Belinkov and Y. Bisk. 2018. Synthetic and natural noise both break neural machine translation.

In International Conference on Learning Representations (ICLR).

A. Ben-Tal, D. den Hertog, A. D. Waegenaere, B. Melenberg, and G. Rennen. 2013. Robust solutions

of optimization problems a�ected by uncertain probabilities. Management Science, 59:341�357.

108

BIBLIOGRAPHY 109

Y. Berger. 2017. Israel arrests palestinian because facebook translated

`good morning' to `attack them'. https://www.haaretz.com/israel-news/

palestinian-arrested-over-mistranslated-good-morning-facebook-post-1.5459427.

R. Bhagat and E. Hovy. 2013. What is a paraphrase? Computational Linguistics, 39.

B. Biggio, B. Nelson, and P. Laskov. 2012. Poisoning attacks against support vector machines. In

International Conference on Machine Learning (ICML), pages 1467�1474.

J. Blitzer, R. McDonald, and F. Pereira. 2006. Domain adaptation with structural correspondence

learning. In Empirical Methods in Natural Language Processing (EMNLP).

S. L. Blodgett, L. Green, and B. O'Connor. 2016. Demographic dialectal variation in social media:

A case study of African-American English. In Empirical Methods in Natural Language Processing

(EMNLP), pages 1119�1130.

S. Bowman, G. Angeli, C. Potts, and C. D. Manning. 2015. A large annotated corpus for learning

natural language inference. In Empirical Methods in Natural Language Processing (EMNLP).

S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio. 2016. Generating

sentences from a continuous space. In Computational Natural Language Learning (CoNLL), pages

10�21.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,

G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,

D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,

J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. 2020. Language

models are few-shot learners. arXiv preprint arXiv:2005.14165.

J. Buolamwini and T. Gebru. 2018. Gender shades: Intersectional accuracy disparities in commercial

gender classi�cation. In Conference on Fairness, Accountability and Transparency, pages 77�91.

Y. Carmon, A. Raghunathan, L. Schmidt, P. Liang, and J. C. Duchi. 2019. Unlabeled data improves

adversarial robustness. In Advances in Neural Information Processing Systems (NeurIPS).

N. V. Chawla, N. Japkowicz, and A. R. Kolcz. 2004. Editorial: Special issue on learning from

imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1).

C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robinson. 2013. One

billion word benchmark for measuring progress in statistical language modeling. arXiv preprint

arXiv:1312.3005.

D. Chen, A. Fisch, J. Weston, and A. Bordes. 2017. Reading Wikipedia to answer open-domain

questions. In Association for Computational Linguistics (ACL).

https://www.haaretz.com/israel-news/palestinian-arrested-over-mistranslated-good-morning-facebook-post-1.5459427
https://www.haaretz.com/israel-news/palestinian-arrested-over-mistranslated-good-morning-facebook-post-1.5459427

BIBLIOGRAPHY 110

E. Choi, H. He, M. Iyyer, M. Yatskar, W. Yih, Y. Choi, P. Liang, and L. Zettlemoyer. 2018. QuAC:

Question answering in context. In Empirical Methods in Natural Language Processing (EMNLP).

C. K. Chow. 1957. An optimum character recognition system using decision functions. In IRE

Transactions on Electronic Computers.

J. Christian. 2018. Why is Google translate spitting out sinister re-

ligious prophecies? https://www.vice.com/en_us/article/j5npeg/

why-is-google-translate-spitting-out-sinister-religious-prophecies.

C. Clark, M. Yatskar, and L. Zettlemoyer. 2019a. Don't take the easy way out: Ensemble based

methods for avoiding known dataset biases. In Empirical Methods in Natural Language Processing

(EMNLP).

P. Clark, O. Etzioni, D. Khashabi, T. Khot, B. D. Mishra, K. Richardson, A. Sabharwal,

C. Schoenick, O. Tafjord, N. Tandon, S. Bhakthavatsalam, D. Groeneveld, M. Guerquin, and

M. Schmitz. 2019b. From `F' to `A' on the N.Y. Regents science exams: An overview of the Aristo

project. arXiv preprint arXiv:1909.01958.

J. M. Cohen, E. Rosenfeld, and J. Z. Kolter. 2019. Certi�ed adversarial robustness via randomized

smoothing. In International Conference on Machine Learning (ICML).

I. Dagan, O. Glickman, and B. Magnini. 2006. The PASCAL recognising textual entailment chal-

lenge. In Machine learning challenges. evaluating predictive uncertainty, visual object classi�ca-

tion, and recognising tectual entailment, pages 177�190.

N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. 2004. Adversarial classi�cation. In

International Conference on Knowledge Discovery and Data Mining (KDD).

H. Daumé III. 2007. Frustratingly easy domain adaptation. In Association for Computational

Linguistics (ACL).

M. Davies. 2008. The corpus of contemporary American English (COCA): One billion words, 1990-

2019. https://www.english-corpora.org/coca/.

M. Davis. 2003. Psycholinguistic evidence on scrambled letters in reading. https://www.mrc-cbu.

cam.ac.uk/.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of deep bidirectional

transformers for language understanding. In Association for Computational Linguistics (ACL),

pages 4171�4186.

W. B. Dolan and C. Brockett. 2005. Automatically constructing a corpus of sentential paraphrases.

In International Workshop on Paraphrasing (IWP).

https://www.vice.com/en_us/article/j5npeg/why-is-google-translate-spitting-out-sinister-religious-prophecies
https://www.vice.com/en_us/article/j5npeg/why-is-google-translate-spitting-out-sinister-religious-prophecies
https://www.english-corpora.org/coca/
https://www.mrc-cbu.cam.ac.uk/
https://www.mrc-cbu.cam.ac.uk/

BIBLIOGRAPHY 111

A. Drozdov, P. Verga, M. Yadav, M. Iyyer, and A. McCallum. 2019. Unsupervised latent tree

induction with deep inside-outside recursive autoencoders. In North American Association for

Computational Linguistics (NAACL).

D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and M. Gardner. 2019. DROP: A read-

ing comprehension benchmark requiring discrete reasoning over paragraphs. In North American

Association for Computational Linguistics (NAACL).

J. Duchi, T. Hashimoto, and H. Namkoong. 2019. Distributionally robust losses against mixture

covariate shifts. https://cs.stanford.edu/~thashim/assets/publications/condrisk.pdf.

J. Duchi and H. Namkoong. 2018. Learning models with uniform performance via distributionally

robust optimization. arXiv preprint arXiv:1810.08750.

K. Dvijotham, S. Gowal, R. Stanforth, R. Arandjelovic, B. O'Donoghue, J. Uesato, and P. Kohli.

2018. Training veri�ed learners with learned veri�ers. arXiv preprint arXiv:1805.10265.

J. Ebrahimi, D. Lowd, and D. Dou. 2018a. On adversarial examples for character-level neural

machine translation. In International Conference on Computational Linguistics (COLING).

J. Ebrahimi, A. Rao, D. Lowd, and D. Dou. 2018b. Hot�ip: White-box adversarial examples for

text classi�cation. In Association for Computational Linguistics (ACL).

B. Edizel, A. Piktus, P. Bojanowski, R. Ferreira, E. Grave, and F. Silvestri. 2019. Misspelling obliv-

ious word embeddings. In North American Association for Computational Linguistics (NAACL).

R. El-Yaniv and Y. Wiener. 2010. On the foundations of noise-free selective classi�cation. Journal

of Machine Learning Research (JMLR), 11.

S. Ertekin, J. Huang, L. Bottou, and L. Giles. 2007. Learning on the border: active learning

in imbalanced data classi�cation. In Conference on Information and Knowledge Management

(CIKM).

A. Ettinger, S. Rao, H. Daumé III, and E. M. Bender. 2017. Towards linguistically generalizable

NLP systems: A workshop and shared task. In Workshop on Building Linguistically Generalizable

NLP Systems.

A. Fathi, M. Balcan, X. Ren, and J. M. Rehg. 2011. Combining self training and active learning for

video segmentation. In British Machine Vision Conference (BMVC).

C. Fellbaum. 1998. WordNet: An Electronic Lexical Database. MIT Press.

S. Feng, E. Wallace, A. Grissom II, M. Iyyer, P. Rodriguez, and J. Boyd-Graber. 2018. Pathologies of

neural models make interpretations di�cult. In Empirical Methods in Natural Language Processing

(EMNLP).

https://cs.stanford.edu/~thashim/assets/publications/condrisk.pdf

BIBLIOGRAPHY 112

A. Fisch, A. Talmor, R. Jia, M. Seo, E. Choi, and D. Chen. 2019. MRQA 2019 shared task: Eval-

uating generalization in reading comprehension. In Workshop on Machine Reading for Question

Answering (MRQA).

J. A. Fodor and Z. W. Pylyshyn. 1988. Connectionism and cognitive architecture: A critical analysis.

Cognition, 28:3�71.

W. N. Francis and H. Kucera. 1979. Brown Corpus Manual.

S. I. Gallant. 1988. Connectionist expert systems. In Communications of the ACM.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. March, and V. Lem-

pitsky. 2016. Domain-adversarial training of neural networks. Journal of Machine Learning Re-

search (JMLR), 17.

S. Garg, V. Sharan, B. H. Zhang, and G. Valiant. 2018. A spectral view of adversarially robust

features. In Advances in Neural Information Processing Systems (NeurIPS).

S. Garg, T. Vu, and A. Moschitti. 2020. TANDA: Transfer and adapt pre-trained transformer

models for answer sentence selection. In Association for the Advancement of Arti�cial Intelligence

(AAAI).

Y. Geifman and R. El-Yaniv. 2017. Selective classi�cation for deep neural networks. In Advances in

Neural Information Processing Systems (NeurIPS).

A. Geiger, I. Cases, L. Karttunen, and C. Potts. 2019. Posing fair generalization tasks for natural

language inference. In Empirical Methods in Natural Language Processing (EMNLP).

D. Gillick, S. Kulkarni, L. Lansing, A. Presta, J. Baldridge, E. Ie, and D. Garcia-Olano. 2019.

Learning dense representations for entity retrieval. In Computational Natural Language Learning

(CoNLL).

A. Globerson and S. Roweis. 2006. Nightmare at test time: Robust learning by feature deletion. In

International Conference on Machine Learning (ICML), pages 353�360.

M. Glockner, V. Shwartz, and Y. Goldberg. 2018. Breaking NLI systems with sentences that require

simple lexical inferences. In Association for Computational Linguistics (ACL).

Y. Gong and S. R. Bowman. 2018. Ruminating reader: Reasoning with gated multi-hop attention.

In Workshop on Machine Reading for Question Answering (MRQA).

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and

Y. Bengio. 2014. Generative adversarial nets. In Advances in Neural Information Processing

Systems (NeurIPS).

BIBLIOGRAPHY 113

I. J. Goodfellow, J. Shlens, and C. Szegedy. 2015. Explaining and harnessing adversarial examples.

In International Conference on Learning Representations (ICLR).

E. Goodwin, K. Sinha, and T. J. O'Donnell. 2020. Probing linguistic systematicity. In Association

for Computational Linguistics (ACL).

S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato, R. Arandjelovi¢, T. Mann, and

P. Kohli. 2019. Scalable veri�ed training for provably robust image classi�cation. In International

Conference on Computer Vision (ICCV).

A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and B. Schölkopf. 2008. Covariate

shift by kernel mean matching. In Dataset Shift in Machine Learning.

S. Gururangan, S. Swayamdipta, O. Levy, R. Schwartz, S. Bowman, and N. A. Smith. 2018. Anno-

tation artifacts in natural language inference data. In Association for Computational Linguistics

(ACL), pages 107�112.

D. K. Harman. 1992. Overview of the �rst TREC text retrieval conference. In Text Retrieval

Conference.

T. B. Hashimoto, M. Srivastava, H. Namkoong, and P. Liang. 2018. Fairness without demographics

in repeated loss minimization. In International Conference on Machine Learning (ICML).

H. He, S. Zha, and H. Wang. 2019. Unlearn dataset bias in natural language inference by �tting the

residual. InWorkshop on Deep Learning for Low-Resource Natural Language Processing (DeepLo).

D. Hendrycks and T. Dietterich. 2019. Benchmarking neural network robustness to common cor-

ruptions and perturbations. In International Conference on Learning Representations (ICLR).

S. Hochreiter and J. Schmidhuber. 1997. Long short-term memory. Neural Computation, 9(8):1735�

1780.

H. Hosseini, S. Kannan, B. Zhang, and R. Poovendran. 2017. Deceiving Google's Perspective API

built for detecting toxic comments. arXiv preprint arXiv:1702.08138.

M. Hu, Y. Peng, and X. Qiu. 2018a. Reinforced mnemonic reader for machine reading comprehension.

In International Joint Conference on Arti�cial Intelligence (IJCAI).

W. Hu, G. Niu, I. Sato, and M. Sugiyama. 2018b. Does distributionally robust supervised learning

give robust classi�ers? In International Conference on Machine Learning (ICML).

H. Huang, C. Zhu, Y. Shen, and W. Chen. 2018. Fusionnet: Fusing via fully-aware attention with

application to machine comprehension. In International Conference on Learning Representations

(ICLR).

BIBLIOGRAPHY 114

P. Huang, R. Stanforth, J. Welbl, C. Dyer, D. Yogatama, S. Gowal, K. Dvijotham, and P. Kohli.

2019. Achieving veri�ed robustness to symbol substitutions via interval bound propagation. In

Empirical Methods in Natural Language Processing (EMNLP).

P. J. Huber. 1964. Robust estimation of a location parameter. The Annals of Mathematical Statistics,

35(1):73�101.

D. A. Hudson and C. D. Manning. 2019. GQA: A new dataset for real-world visual reasoning and

compositional question answering. In Computer Vision and Pattern Recognition (CVPR).

S. Io�e and C. Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. In International Conference on Machine Learning (ICML), pages 448�456.

S. Iyer, N. Dandekar, and K. Csernai. 2017. First quora dataset release: Question pairs. https:

//www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs.

M. Iyyer, J. Wieting, K. Gimpel, and L. Zettlemoyer. 2018. Adversarial example generation with

syntactically controlled paraphrase networks. In North American Association for Computational

Linguistics (NAACL).

H. Ji, R. Grishman, and H. Trang Dang. 2011. Overview of the TAC 2011 knowledge base population

track. In Text Analytics Conference.

R. Jia and P. Liang. 2016. Data recombination for neural semantic parsing. In Association for

Computational Linguistics (ACL).

R. Jia and P. Liang. 2017. Adversarial examples for evaluating reading comprehension systems. In

Empirical Methods in Natural Language Processing (EMNLP).

R. Jia, A. Raghunathan, K. Göksel, and P. Liang. 2019. Certi�ed robustness to adversarial word

substitutions. In Empirical Methods in Natural Language Processing (EMNLP).

D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits. 2020. Is BERT really robust? a strong baseline for

natural language attack on text classi�cation and entailment. In Association for the Advancement

of Arti�cial Intelligence (AAAI).

J. Johnson, M. Douze, and H. Jégou. 2019. Billion-scale similarity search with gpus. In IEEE

Transactions on Big Data.

E. Jones, R. Jia, A. Raghunathan, and P. Liang. 2020. Robust encodings: A framework for combating

adversarial typos. In Association for Computational Linguistics (ACL).

M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer. 2017. TriviaQA: A large scale distantly supervised

challenge dataset for reading comprehension. In Association for Computational Linguistics (ACL).

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

BIBLIOGRAPHY 115

A. Kamath, R. Jia, and P. Liang. 2020. Selective question answering under domain shift. In

Association for Computational Linguistics (ACL).

D. Kang, Y. Sun, D. Hendrycks, T. Brown, and J. Steinhardt. 2019. Testing robustness against

unforeseen adversaries. arXiv preprint arXiv:1908.08016.

D. Kingma and J. Ba. 2015. Adam: A method for stochastic optimization. In International Con-

ference on Learning Representations (ICLR).

V. Kocijan, A. Cretu, O. Camburu, Y. Yordanov, and T. Lukasiewicz. 2019. A surprisingly robust

trick for the Winograd schema challenge. In Association for Computational Linguistics (ACL).

T. Kwiatkowski, J. Palomaki, O. Red�eld, M. Collins, A. Parikh, C. Alberti, D. Epstein, I. Polo-

sukhin, M. Kelcey, J. Devlin, K. Lee, K. N. Toutanova, L. Jones, M. Chang, A. Dai, J. Uszkoreit,

Q. Le, and S. Petrov. 2019. Natural questions: a benchmark for question answering research. In

Association for Computational Linguistics (ACL).

G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy. 2017. Race: Large-scale reading comprehension

dataset from examinations. In Empirical Methods in Natural Language Processing (EMNLP).

B. Lake and M. Baroni. 2018. Generalization without systematicity: On the compositional skills

of sequence-to-sequence recurrent networks. In International Conference on Machine Learning

(ICML).

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. 2020. ALBERT: A lite BERT

for self-supervised learning of language representations. In International Conference on Learning

Representations (ICLR).

H. Lee and A. Y. Ng. 2005. Spam deobfuscation using a hidden Markov model. In Conference on

Email and Anti-Spam (CEAS).

K. Lee, M. Chang, and K. Toutanova. 2019. Latent retrieval for weakly supervised open domain

question answering. In Association for Computational Linguistics (ACL).

K. Lee, S. Salant, T. Kwiatkowski, A. Parikh, D. Das, and J. Berant. 2017. Learning recurrent span

representations for extractive question answering. arXiv.

D. Lenat, M. Prakash, and M. Shepherd. 1985. Cyc: Using common sense knowledge to overcome

brittleness and knowledge acquisition bottlenecks. AI Magazine, 6(4).

H. J. Levesque. 2013. On our best behaviour. In International Joint Conference on Arti�cial

Intelligence (IJCAI).

O. Levy, M. Seo, E. Choi, and L. Zettlemoyer. 2017. Zero-shot relation extraction via reading

comprehension. In Computational Natural Language Learning (CoNLL).

BIBLIOGRAPHY 116

D. D. Lewis. 1995. Evaluating and optimizing autonomous text classi�cation systems. In ACM

Special Interest Group on Information Retreival (SIGIR).

D. D. Lewis and W. A. Gale. 1994. A sequential algorithm for training text classi�ers. In ACM

Special Interest Group on Information Retreival (SIGIR).

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. 2004. Rcv1: A new benchmark collection for text

categorization research. Journal of Machine Learning Research (JMLR), 5.

J. Li, W. Monroe, T. Shi, A. Ritter, and D. Jurafsky. 2017. Adversarial learning for neural dialogue

generation. In Empirical Methods in Natural Language Processing (EMNLP).

T. Linzen, E. Dupoux, and Y. Goldberg. 2016. Assessing the ability of LSTMs to learn syntax-

sensitive dependencies. Transactions of the Association for Computational Linguistics (TACL),

4.

N. F. Liu, R. Schwartz, and N. A. Smith. 2019a. Inoculation by �ne-tuning: A method for analyzing

challenge datasets. In North American Association for Computational Linguistics (NAACL).

R. Liu, J. Hu, W. Wei, Z. Yang, and E. Nyberg. 2017. Structural embedding of syntactic trees for

machine comprehension. In Empirical Methods in Natural Language Processing (EMNLP).

X. Liu, Y. Shen, K. Duh, and J. Gao. 2018. Stochastic answer networks for machine reading

comprehension. In Association for Computational Linguistics (ACL).

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and

V. Stoyanov. 2019b. RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint

arXiv:1907.11692.

D. Lowd and C. Meek. 2005. Adversarial learning. In International Conference on Knowledge

Discovery and Data Mining (KDD).

D. Lowell, Z. C. Lipton, and B. C. Wallace. 2019. Practical obstacles to deploying active learning.

In Empirical Methods in Natural Language Processing (EMNLP).

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. 2011. Learning word vectors

for sentiment analysis. In Association for Computational Linguistics (ACL).

B. MacCartney and C. D. Manning. 2008. Modeling semantic containment and exclusion in natural

language inference. In International Conference on Computational Linguistics (COLING).

N. Madnani and B. J. Dorr. 2010. Generating phrasal and sentential paraphrases: A survey of

data-driven methods. Computational Linguistics, 36(3):341�387.

BIBLIOGRAPHY 117

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. 2018. Towards deep learning models

resistant to adversarial attacks. In International Conference on Learning Representations (ICLR).

C. Manning, P. Raghavan, and H. Schütze. 2008. Introduction to information retrieval, volume 1.

Cambridge University Press.

C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky. 2014. The

Stanford CoreNLP natural language processing toolkit. In ACL system demonstrations.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. 1993. Building a large annotated corpus of

English: the Penn Treebank. Computational Linguistics, 19:313�330.

M. Marelli, S. Menini, M. Baroni, L. Bentivogli, R. bernardi, and R. Zamparelli. 2014. A SICK cure

for the evaluation of compositional distributional semantic models. In Language Resources and

Evaluation Conference (LREC).

J. McCarthy. 1984. Some expert systems need common sense. In Proceedings of a symposium on

Computer culture: The scienti�c, intellectual, and social impact of the computer.

R. T. McCoy, E. Pavlick, and T. Linzen. 2019. Right for the wrong reasons: Diagnosing syntactic

heuristics in natural language inference. In Association for Computational Linguistics (ACL).

T. Miyato, A. M. Dai, and I. Goodfellow. 2017. Adversarial training methods for semi-supervised

text classi�cation. In International Conference on Learning Representations (ICLR).

R. Montague. 1970. English as a formal language. In Linguaggi nella Società e nella Tecnica, pages

189�224.

R. Montague. 1973. The proper treatment of quanti�cation in ordinary English. In Approaches to

Natural Language, pages 221�242.

S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. 2017. Universal adversarial perturbations.

In Computer Vision and Pattern Recognition (CVPR).

N. Mostafazadeh, N. Chambers, X. He, D. Parikh, D. Batra, L. Vanderwende, P. Kohli, and J. Allen.

2016. A corpus and cloze evaluation for deeper understanding of commonsense stories. In North

American Association for Computational Linguistics (NAACL).

N. Mrk²i¢, D. Ó Séaghdha, B. Thomson, M. Ga²i¢, L. Rojas-Barahona, P. Su, D. Vandyke, T. Wen,

and S. Young. 2016. Counter-�tting word vectors to linguistic constraints. In North American

Association for Computational Linguistics (NAACL).

S. Mussmann and P. Liang. 2018. Uncertainty sampling is preconditioned stochastic gradient descent

on zero-one loss. In Advances in Neural Information Processing Systems (NeurIPS).

BIBLIOGRAPHY 118

A. Naik, A. Ravichander, N. Sadeh, C. Rose, and G. Neubig. 2018. Stress test evaluation for natural

language inference. In International Conference on Computational Linguistics (COLING), pages

2340�2353.

A. Naja�, S. Maeda, M. Koyama, and T. Miyato. 2019. Robustness to adversarial perturbations in

learning from incomplete data. In Advances in Neural Information Processing Systems (NeurIPS).

N. Narodytska and S. P. Kasiviswanathan. 2017. Simple black-box adversarial perturbations for

deep networks. In IEEE Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW).

Y. Nie, A. Williams, E. Dinan, M. Bansal, J. Weston, and D. Kiela. 2020. Adversarial NLI: A new

benchmark for natural language understanding. In Association for Computational Linguistics

(ACL).

R. Nogueira and K. Cho. 2019. Passage re-ranking with BERT. arXiv preprint arXiv:1901.04085.

Y. Oren, S. Sagawa, T. Hashimoto, and P. Liang. 2019. Distributionally robust language modeling.

In Empirical Methods in Natural Language Processing (EMNLP).

D. Paperno, G. Kruszewski, A. Lazaridou, Q. N. Pham, R. Bernardi, S. Pezzelle, M. Baroni,

G. Boleda, and R. Fernandez. 2016. The LAMBADA dataset: Word prediction requiring a broad

discourse context. In Association for Computational Linguistics (ACL).

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. Celik, and A. Swami. 2017. Practical black-box

attacks against deep learning systems using adversarial examples. In Proceedings of the ACM Asia

Conference on Computer and Communications Security.

A. Parikh, O. Täckström, D. Das, and J. Uszkoreit. 2016. A decomposable attention model for

natural language inference. In Empirical Methods in Natural Language Processing (EMNLP).

B. H. Partee. 2007. Compositionality and coercion in semantics: The dynamics of adjective meaning.

Cognitive Foundations of Interpretation.

J. Pennington, R. Socher, and C. D. Manning. 2014. GloVe: Global vectors for word representation.

In Empirical Methods in Natural Language Processing (EMNLP), pages 1532�1543.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. 2018.

Deep contextualized word representations. In North American Association for Computational

Linguistics (NAACL).

A. Poliak, J. Naradowsky, A. Haldar, R. Rudinger, and B. V. Durme. 2018. Hypothesis only baselines

in natural language inference. In Joint Conference on Lexical and Computational Semantics.

BIBLIOGRAPHY 119

D. Pruthi, B. Dhingra, and Z. C. Lipton. 2019. Combating adversarial misspellings with robust

word recognition. In Association for Computational Linguistics (ACL).

A. Raghunathan, J. Steinhardt, and P. Liang. 2018. Certi�ed defenses against adversarial examples.

In International Conference on Learning Representations (ICLR).

A. Raghunathan, S. M. Xie, F. Yang, J. C. Duchi, and P. Liang. 2020. Understanding and mitigating

the tradeo� between robustness and accuracy. In International Conference on Machine Learning

(ICML).

P. Rajpurkar, R. Jia, and P. Liang. 2018. Know what you don't know: Unanswerable questions for

SQuAD. In Association for Computational Linguistics (ACL).

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. 2016. SQuAD: 100,000+ questions for machine

comprehension of text. In Empirical Methods in Natural Language Processing (EMNLP).

G. E. Rawlinson. 1976. The signi�cance of letter position in word recognition. Ph.D. thesis, Uni-

versity of Nottingham.

N. Reimers and I. Gurevych. 2019. Sentence-BERT: Sentence embeddings using siamese BERT-

networks. In Empirical Methods in Natural Language Processing (EMNLP).

M. T. Ribeiro, C. Guestrin, and S. Singh. 2019. Are red roses red? evaluating consistency of

question-answering models. In Association for Computational Linguistics (ACL).

M. T. Ribeiro, S. Singh, and C. Guestrin. 2018. Semantically equivalent adversarial rules for debug-

ging NLP models. In Association for Computational Linguistics (ACL).

L. Rimell, S. Clark, and M. Steedman. 2009. Unbounded dependency recovery for parser evaluation.

In Empirical Methods in Natural Language Processing (EMNLP).

A. Robey, H. Hassani, and G. J. Pappas. 2020. Model-based robust deep learning. arXiv preprint

arXiv:2005.10247.

R. Rudinger, J. Naradowsky, B. Leonard, and B. V. Durme. 2018. Gender bias in coreference

resolution. In North American Association for Computational Linguistics (NAACL).

S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang. 2020. Distributionally robust neural networks

for group shifts: On the importance of regularization for worst-case generalization. In International

Conference on Learning Representations (ICLR).

K. Sakaguchi, K. Duh, M. Post, and B. V. Durme. 2017. Robsut wrod reocginiton via semi-character

recurrent neural network. In Association for the Advancement of Arti�cial Intelligence (AAAI).

BIBLIOGRAPHY 120

M. Sap, D. Card, S. Gabriel, Y. Choi, and N. A. Smith. 2019. The risk of racial bias in hate speech

detection. In Association for Computational Linguistics (ACL).

M. Schain. 2015. Machine Learning Algorithms and Robustness. Ph.D. thesis, Tel Aviv University.

R. Schwartz, M. Sap, Y. Konstas, L. Zilles, Y. Choi, and N. A. Smith. 2017. The e�ect of di�erent

writing tasks on linguistic style: A case study of the ROC story cloze task. In Computational

Natural Language Learning (CoNLL).

M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. 2017. Bidirectional attention �ow for machine

comprehension. In International Conference on Learning Representations (ICLR).

B. Settles. 2010. Active learning literature survey. Technical report, University of Wisconsin, Madi-

son.

G. Shen, Y. Yang, and Z. Deng. 2017a. Inter-weighted alignment network for sentence pair modeling.

In Empirical Methods in Natural Language Processing (EMNLP).

T. Shen, T. Lei, R. Barzilay, and T. Jaakkola. 2017b. Style transfer from non-parallel text by

cross-alignment. In Advances in Neural Information Processing Systems (NeurIPS).

Y. Shen, P. Huang, J. Gao, and W. Chen. 2017c. ReasoNet: Learning to stop reading in machine

comprehension. In International Conference on Knowledge Discovery and Data Mining (KDD).

Z. Shi, H. Zhang, K. Chang, M. Huang, and C. Hsieh. 2020. Robustness veri�cation for transformers.

In International Conference on Learning Representations (ICLR).

S. Shieber. 2016. Principles for designing an AI competition, or why the Turing test fails as an

inducement prize. AI Magazine, 37(1).

O. Siméoni, M. Budnik, Y. Avrithis, and G. Gravier. 2019. Rethinking deep active learning: Using

unlabeled data at model training. arXiv preprint arXiv:1911.08177.

R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts. 2013.

Recursive deep models for semantic compositionality over a sentiment treebank. In Empirical

Methods in Natural Language Processing (EMNLP).

J. Steinhardt, P. W. Koh, and P. Liang. 2017. Certi�ed defenses for data poisoning attacks. In

Advances in Neural Information Processing Systems (NeurIPS).

G. J. Sussman. 2007. Building robust systems: An essay. https://groups.csail.mit.edu/mac/

users/gjs/6.945/readings/robust-systems.pdf.

https://groups.csail.mit.edu/mac/users/gjs/6.945/readings/robust-systems.pdf
https://groups.csail.mit.edu/mac/users/gjs/6.945/readings/robust-systems.pdf

BIBLIOGRAPHY 121

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. 2014.

Intriguing properties of neural networks. In International Conference on Learning Representations

(ICLR).

A. Talmor and J. Berant. 2019. MultiQA: An empirical investigation of generalization and transfer

in reading comprehension. In Association for Computational Linguistics (ACL).

R. Tatman. 2017. Gender and dialect bias in YouTube's automatic captions. In Workshop on Ethics

in Natural Langauge Processing, volume 1, pages 53�59.

J. W. Tukey. 1960. A survey of sampling from contaminated distributions. Contributions to proba-

bility and statistics, 2:448�485.

A. M. Turing. 1950. Computing machinery and intelligence. Mind, 49:433�460.

J. Uesato, J. Alayrac, P. Huang, R. Stanforth, A. Fawzi, and P. Kohli. 2019. Are labels required

for improving adversarial robustness? In Advances in Neural Information Processing Systems

(NeurIPS).

R. Volpi, H. Namkoong, O. Sener, J. Duchi, V. Murino, and S. Savarese. 2018. Generalizing to

unseen domains via adversarial data augmentation. In Advances in Neural Information Processing

Systems (NeurIPS).

E. Wallace, S. Feng, N. Kandpal, M. Gardner, and S. Singh. 2019a. Universal adversarial triggers for

attacking and analyzing NLP. In Empirical Methods in Natural Language Processing (EMNLP).

E. Wallace, P. Rodriguez, S. Feng, I. Yamada, and J. Boyd-Graber. 2019b. Trick me if you can:

Human-in-the-loop generation of adversarial examples for question answering. Transactions of the

Association for Computational Linguistics (TACL), 7.

A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman.

2019a. SuperGLUE: A stickier benchmark for general-purpose language understanding systems.

In Advances in Neural Information Processing Systems (NeurIPS).

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. 2019b. GLUE: A multi-task

benchmark and analysis platform for natural language understanding. In International Conference

on Learning Representations (ICLR).

S. Wang and J. Jiang. 2017. Machine comprehension using match-LSTM and answer pointer. In

International Conference on Learning Representations (ICLR).

W. Wang, M. Yan, and C. Wu. 2018. Multi-granularity hierarchical attention fusion networks for

reading comprehension and question answering. In Association for Computational Linguistics

(ACL).

BIBLIOGRAPHY 122

W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou. 2017. Gated self-matching networks for reading

comprehension and question answering. In Association for Computational Linguistics (ACL).

Z. Wang, H. Mi, W. Hamza, and R. Florian. 2016. Multi-perspective context matching for machine

comprehension. arXiv preprint arXiv:1612.04211.

D. Weissenborn, G. Wiese, and L. Sei�e. 2017. Making neural QA as simple as possible but not

simpler. In Computational Natural Language Learning (CoNLL).

J. Weston, A. Bordes, S. Chopra, and T. Mikolov. 2015. Towards AI-complete question answering:

A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698.

A. Williams, N. Nangia, and S. Bowman. 2018. A broad-coverage challenge corpus for sentence

understanding through inference. In Association for Computational Linguistics (ACL), pages

1112�1122.

T. Winograd. 1991. Thinking machines: Can there be? are we? In The Boundaries of Humanity:

Humans, Animals, Machines, pages 198�223.

E. Wong and J. Z. Kolter. 2018. Provable defenses against adversarial examples via the convex outer

adversarial polytope. In International Conference on Machine Learning (ICML).

M. Yahia, R. Mahmood, N. Sulaiman, and F. Ahmad. 2000. Rough neural expert systems. Expert

Systems with Applications, 18:87�99.

Y. Yang and M. Loog. 2018. A benchmark and comparison of active learning for logistic regression.

Pattern Recognition, 83.

Y. Yang, W. Yih, and C. Meek. 2015. WikiQA: A challenge dataset for open-domain question

answering. In Empirical Methods in Natural Language Processing (EMNLP), pages 2013�2018.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. 2019. XLNet: General-

ized autoregressive pretraining for language understanding. In Advances in Neural Information

Processing Systems (NeurIPS).

D. Yin, R. G. Lopes, J. Shlens, E. D. Cubuk, and J. Gilmer. 2019. A fourier perspective on model

robustness in computer vision. In Advances in Neural Information Processing Systems (NeurIPS).

D. Yogatama, C. de M. d'Autume, J. Connor, T. Kocisky, M. Chrzanowski, L. Kong, A. Lazaridou,

W. Ling, L. Yu, C. Dyer, et al. 2019. Learning and evaluating general linguistic intelligence. arXiv

preprint arXiv:1901.11373.

S. Yoon, F. Dernoncourt, D. S. Kim, T. Bui, and K. Jung. 2019. A compare-aggregate model with

latent clustering for answer selection. In Conference on Information and Knowledge Management

(CIKM).

BIBLIOGRAPHY 123

Y. Yu, W. Zhang, K. Hasan, M. Yu, B. Xiang, and B. Zhou. 2016. End-to-end answer chunk

extraction and ranking for reading comprehension. arXiv preprint arXiv:1610.09996.

L. A. Zadeh. 1983. A computational approach to fuzzy quanti�ers in natural languages. Computers

and Mathematics with Applications, 9(1).

G. Zhang, B. Bai, J. Liang, K. Bai, S. Chang, M. Yu, C. Zhu, and T. Zhao. 2019a. Selection bias

explorations and debias methods for natural language sentence matching datasets. In Association

for Computational Linguistics (ACL).

H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan. 2019b. Theoretically

principled trade-o� between robustness and accuracy. In International Conference on Machine

Learning (ICML).

J. Zhang, X. Zhu, Q. Chen, L. Dai, S. Wei, and H. Jiang. 2017a. Exploring question understanding

and adaptation in neural-network-based question answering. arXiv preprint arXiv:1703.04617.

Y. Zhang, R. Barzilay, and T. Jaakkola. 2017b. Aspect-augmented adversarial networks for domain

adaptation. Transactions of the Association for Computational Linguistics (TACL), 5:515�528.

J. Zhao, T. Wang, M. Yatskar, V. Ordoñez, and K. Chang. 2017. Men also like shopping: Reducing

gender bias ampli�cation using corpus-level constraints. In Empirical Methods in Natural Language

Processing (EMNLP).

J. Zhao, T. Wang, M. Yatskar, V. Ordoñez, and K. Chang. 2018. Gender bias in coreference

resolution: Evaluation and debiasing methods. In North American Association for Computational

Linguistics (NAACL).

C. Zhu, Y. Cheng, Z. Gan, S. Sun, T. Goldstein, and J. Liu. 2020. FreeLB: Enhanced adversarial

training for natural language understanding. In International Conference on Learning Represen-

tations (ICLR).

Appendix A

Supplemental material for Chapter 3

A.1 Numerical stability of softmax

In this section, we show how to compute interval bounds for softmax layers in a numerically stable

way. We will do this by showing how to handle log-softmax layers. Note that since softmax is just

exponentiated log-softmax, and exponentiation is monotonic, bounds on log-softmax directly yield

bounds on softmax.

Let zdep denote a vector of length m, let c be an integer ∈ {1, . . . ,m}, and let zres represent the

log-softmax score of index c, i.e.

zres = log
exp(zdepc)∑m
j=1 exp(zdepj)

(A.1)

= zdepc − log

m∑
j=1

exp(zdepj). (A.2)

Given interval bounds `j ≤ zdepj ≤ uj for each j, we show how to compute upper and lower bounds

on zres. For any vector v, we assume access to a subroutine that computes

logsumexp(v) = log
∑
i

exp(vi)

stably. The standard way to compute this is to normalize v by subtracting maxi(vi) before taking

exponentials, then add it back at the end. logsumexp is a standard function in libraries like PyTorch.

We will also rely on the fact that if v is the concatenation of vectors u and w, then logsumexp(v) =

logsumexp([logsumexp(u), logsumexp(w)]).

124

APPENDIX A. SUPPLEMENTAL MATERIAL FOR CHAPTER 3 125

Upper bound. The upper bound ures is achieved by having the maximum value of zdepc , and

minimum value of all others. This can be written as:

ures = udepc − log

exp(udepc) +
∑

1≤j≤m,j 6=c

exp(`depj)

 . (A.3)

While we could directly compute this expression, it is di�cult to vectorize. Instead, with some

rearranging, we get

ures = udepc − log

(
exp(udepc)− exp(`depc) +

m∑
j=1

exp(`depj)

)
. (A.4)

The second term is the logsumexp of

log
(
exp(udepc)− exp(`depc)

)
(A.5)

and

logsumexp(`dep). (A.6)

Since we know how to compute logsumexp, this reduces to computing (A.5). Note that (A.5) can

be rewritten as

udepc + log
(
1− exp(`depc − udepc)

)
(A.7)

by adding and subtracting udepc . To compute this quantity, we consider two cases:

1. udepc � `depc . Here we use the fact that stable methods exist to compute log1p(x) = log(1 + x)

for x close to 0. We compute the desired value as

udepc + log 1p(− exp(`depc − udepc)),

since exp(`depc − udepc) will be close to 0.

2. udepc close to `depc . Here we use the fact that stable methods exist to compute

expm1(x) = exp(x)− 1

for x close to 0. We compute the desired value as

udepc + log(− expm1(`depc − udepc)),

APPENDIX A. SUPPLEMENTAL MATERIAL FOR CHAPTER 3 126

since `depc − udepc may be close to 0.

We use case 1 if udepc − `depc > log 2, and case 2 otherwise.1

Lower bound. The lower bound `res is achieved by having the minimum value of zdepc , and the

maximum value of all others. This can be written as:

`res = `depc − log

exp(`depc) +
∑

1≤j≤m,j 6=c

exp(udepj)

 . (A.8)

The second term is just a normal logsumexp, which is easy to compute. To vectorize the implemen-

tation, it helps to �rst compute the logsumexp of everything except `depc , and then logsumexp that

with `depc .

1See https://cran.r-project.org/web/packages/Rmpfr/vignettes/log1mexp-note.pdf for further explanation.

https://cran.r-project.org/web/packages/Rmpfr/vignettes/log1mexp-note.pdf

Appendix B

Supplemental material for Chapter 6

B.1 Evaluation details

To evaluate a given scoring function S at threshold γ on a test setDtest
all , we must compute the number

of true positives TP(S, γ), false positives FP(S, γ), and false negatives FN(S, γ). True positives and

false negatives are computationally easy to compute, as they only require evaluating S(x) on all the

positive inputs x in Dtest
all . However, without any structural assumptions on S, it is computationally

infeasible to exactly compute the number of false positives, as that would require evaluating S on

every negative example in Dtest
all , which is too large to enumerate.

Therefore, we devise an approach to compute an unbiased, low-variance estimate of FP(S, γ).

Recall that this term is de�ned as

FP(S, γ) =
∑

x∈Dtest
all

1[y(x) = 0 ∧ S(x) > γ] (B.1)

=
∑

x∈Dtest
neg

1[S(x) > γ] (B.2)

where Dtest
neg denotes the set of all negative examples in Dtest

all .

One approach to estimating FP(S, γ) would be simply to randomly downsample Dtest
neg to some

smaller set R, count the number of false positives in R, and then multiply the count by |Dtest
neg |/|R|.

This would be an unbiased estimate of Dtest
neg , but has high variance when the rate of false positive

errors is low. For example, if |Dtest
neg | = 1010, |R| = 106, and the model makes a false positive error

on 1 in 106 examples in Dtest
neg , then FP(S, γ) = 104. However, with probability

(
1− 1

106

)106

≈ 1/e ≈ 0.368,

127

APPENDIX B. SUPPLEMENTAL MATERIAL FOR CHAPTER 6 128

R will contain no false positives, so we will estimate FP(S, γ) as 0. A similar calculation shows that

the probability of having exactly one false positive in R is also roughly 1/e, which means that with

probability roughly 1 − 2/e ≈ 0.264, we will have at least two false positives in R, and therefore

overestimate FP(S, γ) by at least a factor of two.

To get a lower variance estimate F̂P(S, γ), we preferentially sample from likely false positives

and use importance weighting to get an unbiased estimate of FP(S, γ). In particular, we construct

Dtest
near to be the pairs in Dtest

all with nearby pre-trained BERT embeddings, analogously to how we

create the seed set in Section 6.3.2. Points with nearby BERT embeddings are likely to look similar

are therefore are more likely to be false positives. Note that

FP(S, γ) =
∑

x∈Dtest
near

1[S(x) > γ]

+
∑

x∈Dtest
neg \Dtest

near

1[S(x) > γ] (B.3)

=
∑

x∈Dtest
near

1[S(x) > γ]

+ wrand · Ex∼Unif(Dtest
neg \Dtest

near)
1[S(x) > γ], (B.4)

where we de�ne wrand = |Dtest
neg | − |Dtest

near|.
We can compute the �rst term exactly, sinceDtest

near is small enough to enumerate, and approximate

the second term as

wrand ·
1

|Dtest
rand|

∑
x∈Dtest

rand

1[S(x) > γ], (B.5)

where Dtest
rand is a uniformly random subset of Dtest

neg \Dtest
near. Therefore, our �nal estimate is

F̂P(S, γ) =
∑

x∈Dtest
near

1[S(x) > γ]

+
wrand

|Dtest
rand|

∑
x∈Dtest

rand

1[S(x) > γ]. (B.6)

B.2 Incorporating manual labels

In Section 6.2.5, we manually label examples that were automatically labeled as false positives,

and use this to improve our estimates of the true model precision. We manually label randomly

chosen putative false positives from both Ddev
near and D

dev
rand, and use this to estimate the proportion

of putative false positives in each set that are real false positives. Let p̂near denote the estimated

fraction of putative false positives in Ddev
near that are real false positives, and p̂rand be the analogous

APPENDIX B. SUPPLEMENTAL MATERIAL FOR CHAPTER 6 129

quantity for Ddev
rand. Our updated estimate F̂Pmanual(S, γ) is then de�ned as

F̂Pmanual(S, γ) = p̂near
∑

x∈Dtest
near

1[S(x) > γ]

+
p̂random · wrand

|Dtest
rand|

∑
x∈Dtest

rand

1[S(x) > γ]. (B.7)

We then compute precision using F̂Pmanual(S, γ) in place of F̂P(S, γ).

	Abstract
	Acknowledgements
	Introduction
	Recent successes in NLP
	The robustness problem
	Solving tasks requires handling worst-case examples
	The Turing Test
	Generalizing to the worst case in linguistics

	Motivating settings
	Systematic language understanding
	Real-world adversaries
	Avoiding bias
	Realistic distribution shift

	Building robust NLP systems
	Outline
	Adversarial perturbations
	Weaknesses of standard datasets

	Background
	Brittleness in expert systems
	Robustness in machine learning
	Example-level perturbations
	Adversarial examples in computer vision
	Spam classification
	Adversarial perturbations and neural NLP

	Reweighting and subgroups
	Bias against underrepresented groups
	Analysis of challenging subsets
	Distributionally robust optimization

	Extrapolation
	Domain adaptation and domain generalization
	Stress tests
	Unnatural inputs

	Other adversarial and robust methods
	Generative adversarial networks
	Domain-adversarial training
	Robust statistics and data poisoning
	Improving standard accuracy

	Certifiably Robust Training
	Setup
	Perturbations by word substitutions
	Robustness to all perturbations

	Certification via interval bound propagation
	Bounds for the input layer
	Interval bounds for elementary functions
	Final layer
	Certifiably robust training with IBP

	Tasks and models
	Tasks
	Models

	Experiments
	Setup
	Main results
	Clean versus robust accuracy
	Runtime considerations
	Error analysis
	Training schedule
	Word vector analysis
	Certifying long-term memory

	Discussion

	Robust Encodings
	Setup
	Robust Encodings
	Encoding functions
	Encoding function desiderata

	Robust Encodings for Typos
	Encodings as clusters
	Simple example
	Encoding out-of-vocabulary tokens
	Connected component encodings
	Agglomerative cluster encodings
	Mapping clusters to encoded tokens

	Experiments
	Setup
	Baseline models.
	Models with RobEn
	Robustness gains from RobEn
	Reusable encodings
	Agglomerative clustering trade-off
	Internal permutation attacks
	Constrained adversaries

	Discussion

	Adversarial Evaluation for Reading Comprehension
	The SQuAD dataset and models
	Dataset
	Models
	Standard evaluation

	Adversarial evaluation
	General framework
	Semantics-preserving adversaries
	Concatenative adversaries
	AddSent
	AddAny

	Experiments
	Setup
	Main experiments
	Human evaluation
	Subsequent models
	Analysis
	Transferability across models
	Training on adversarial examples

	Discussion

	Active Learning for Imbalanced Pairwise Tasks
	Setting
	Data collection
	Evaluation
	Pairwise tasks

	Results training on heuristic datasets
	Evaluation
	Datasets
	Models
	Evaluation results
	Manual verification of imputed negatives

	Active learning for pairwise tasks
	Active learning
	Modeling and implementation

	Active learning experiments
	Experimental details
	Main results
	Manual verification of imputed negatives
	Comparison with stratified sampling
	Training other models on collected data
	Learning curves and data efficiency
	Effect of seed set

	Discussion

	Conclusion
	Future directions
	Systematicity and consistency
	Side-effects of adversarial robustness
	Adversarial data collection
	Knowing when to abstain
	Solving synthetic tasks

	Final thoughts

	Supplemental material for Chapter 3
	Numerical stability of softmax

	Supplemental material for Chapter 6
	Evaluation details
	Incorporating manual labels

