Methods and Results for Challenge 3A

Robert Bruggner, Rachel Finck, Robin Jia, Noah Zimmerman Stanford University | rbruggner@stanford.edu

FlowCAPII Summit • Sept 23 2011

 Given two tubes of data from a single patient, predict the antigen used in each tube

- Given two tubes of data from a single patient, predict the antigen used in each tube
- Our Approach:
 - Automatically identify populations of cells by surface marker
 - Extract population meta-features and build model to predict antigen group

- Given two tubes of data from a single patient, predict the antigen used in each tube
- Our Approach:
 - Automatically identify populations of cells by surface marker
 - Extract population meta-features and build model to predict antigen group
- Identified a highly predictive population for determining antigen group

Surface Markers Normalized for Simple Cluster Matching

Surface Markers Normalized for Simple Cluster Matching

• Surface marker expression variable between patients

Surface Markers Normalized for Simple Cluster Matching

- Surface marker expression variable between patients
- Need to establish population correspondence

Surface Markers Normalized for Simple Cluster Matching

- Surface marker expression variable between patients
- Need to establish population correspondence
- Assume bimodal expression & landmark normalize

 Data from all patients and conditions combined

- Data from all patients and conditions combined
- Combined data clustered in all pairwise sets of dimensions

- Data from all patients and conditions combined
- Combined data clustered in all pairwise sets of dimensions
- Dimensions with highest confidence clusters selected

- Data from all patients and conditions combined
- Combined data clustered in all pairwise sets of dimensions
- Dimensions with highest confidence clusters selected
- Identified clusters recursively projected and clustered until no new clusters found

 Data separated back into source components

- Data separated back into source components
- Cluster Meta-features
 extracted
 - Cluster density
 - Antigen condition density difference vs negative controls
 - Response of clusters in cytokine response dimensions as quantified by Earth Mover's Distance (EMD)

	Sample Feature Table			
			\bigwedge	
F	Cluster Densities	Density Diff v. Negctrl	Response Marker EMD v. Negctrl	
Patient 1 ENV	0.37	0.11	3.24	
Patient 1 GAG	0.24	0.06	3.01	
Patient 1 NEG	0.26	0.03	2.84	
Patient 2 ENV	0.54	0.08	4.63	
Patient 2 GAG	0.34	0.02	3.85	
Patient 2 NEG	0.42	0.01	2.11	

- Data separated back into source components
- Cluster Meta-features
 extracted
 - Cluster density
 - Antigen condition density difference vs negative controls
 - Response of clusters in cytokine response dimensions as quantified by Earth Mover's Distance (EMD)
- Logistic Regression Classification Model built from features

,	Sample Feature Table		
			\mathbf{M}
	Cluster Densities	Density Diff v. Negctrl	Response Marker EMD v. Negctrl
Patient 1 ENV	0.37	0.11	3.24
Patient 1 GAG	0.24	0.06	3.01
Patient 1 NEG	0.26	0.03	2.84
Patient 2 ENV	0.54	0.08	4.63
Patient 2 GAG	0.34	0.02	3.85
Patient 2 NEG	0.42	0.01	2.11

 100 runs of random 3-fold internal cross validation using different combinations of features

- 100 runs of random 3-fold internal cross validation using different combinations of features
- Logistic regression model using cluster difference and EMD features had best performance

Densities + EMD Features Differences & EMD Features Densities, Differences, EMD Featu

- 100 runs of random 3-fold internal cross validation using different combinations of features
- Logistic regression model using cluster difference and EMD features had best performance
- Used to predict test labels

Density of CD4/CD8 Double Positive T-cell Population Most Important Factor in Logistic Regression Model

Density of CD4/CD8 Double Positive T-cell Population Most Important Factor in Logistic Regression Model

Density of CD4/CD8 Double Positive T-cell Population Most Important Factor in Logistic Regression Model

Backgating suggest possibly two subpopulations within CD4/CD8 cells

 Identification of CD4+/CD8+ population highlights unbiased nature of method

- Identification of CD4+/CD8+ population highlights unbiased nature of method
- Need to identify all potentially predictive features and their predictive power for users

- Identification of CD4+/CD8+ population highlights unbiased nature of method
- Need to identify all potentially predictive features and their predictive power for users
- Automated methods critical for comprehensive exploration of higher-dimensional data

• J. Irish, D. Parks, R. Tibshirani, D. Dill, & G. Nolan

- J. Irish, D. Parks, R. Tibshirani, D. Dill, & G. Nolan
- FlowCAPII Committee

- J. Irish, D. Parks, R. Tibshirani, D. Dill, & G. Nolan
- FlowCAPII Committee
- NIAID

- J. Irish, D. Parks, R. Tibshirani, D. Dill, & G. Nolan
- FlowCAPII Committee
- NIAID

Questions?
 <u>rbruggner@stanford.edu</u>