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Large Language Models, Warts and All
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Auditing, Understanding, and Leveraging
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Auditing
Given an LLM, what 
can we infer about 

how it was created? 

Understanding
Can we understand  
how LLMs internally 
make predictions?

Leveraging
How can we 

overcome LLMs’ 
deficiencies to solve 

complex tasks?



Overview

4

Auditing
How can we infer 
what was in the 

training data of an 
LLM?

Understanding
How do LLMs 

memorize, do math, 
and learn from 

demonstrations?
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symbolic solvers for 

planning tasks?
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Auditing
How can we infer 
what was in the 

training data of an 
LLM?

Johnny Wei* Ryan Wang*

Proving Membership in 
LLM Pretraining Data via 

Data Watermarks
ACL Findings 2024



Legal Landscape for Training Data
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Data Memorization as Evidence

7
https://storage.courtlistener.com/recap/gov.uscourts.nysd.612697/gov.uscourts.nysd.612697.1.0.pdf 

https://storage.courtlistener.com/recap/gov.uscourts.nysd.612697/gov.uscourts.nysd.612697.1.0.pdf


Data Memorization has Low Power

• Complete memorization of an 
article is a smoking gun, 
if detected

• LLM’s unlikely to memorize full 
documents unless they are 
duplicated many times
• Consider smaller publishers than 

NYT

• Goal: Detect usage of a data 
collection even if no individual 
article was memorized verbatim
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Carlini et al. Quantifying Memorization Across Neural Language Models. ICLR 2023.



Data Watermarks

• Idea: Add a consistent watermark to 
every document in the collection
• E.g., Append “Mpadd*t6Ex” to every 

document (can hide in webpage with CSS)

• Check whether LLM memorizes the 
watermark (not any individual document)
• Watermark appears many times in corpus:

More likely to be memorized

• Watermark drawn from random distribution: 
Enables rigorous statistical tests
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Proving Data Usage with Statistical Tests
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Do Watermarks Work?

• Yes!

• We trained medium-scale 
language models on data with 
watermarks

• Can detect watermark from 
model behavior alone—proof 
that it was seen during 
training!

11

Setting: 80 character watermark
inserted into 256 documents



What about Even Larger LMs?

• Can’t train very 
large LMs ourselves

• Idea: Use SHA/MD5 
hashes as proxy for 
watermarks

12



Larger LM’s Memorize Common Hashes

• Model: BLOOM-176B
• Dataset is publicly available

• All hashes repeated at least 100 
times are detectable

• Longer hashes easier to detect

13



Conclusion: Data Watermarks

• Data watermarks:
• Statistically rigorous

• Scale to very large models

• Other results (see paper)
• Stealthier watermarks using 

imperceptible Unicode 
substitutions

• Effects of “interference” 
(multiple independent 
watermarkers)

14
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Understanding
How do LLMs 

memorize, do math, 
and learn from 

demonstrations?

Ting-Yun 
Chang

Jesse 
Thomason

Do Localization Methods 
Actually Localize Memorized 

Data in LLMs?
NAACL 2024



Rote Memorization

17
https://storage.courtlistener.com/recap/gov.uscourts.nysd.612697/gov.uscourts.nysd.612697.1.0.pdf 

Scientific Question:
How do Language Models do this?

https://storage.courtlistener.com/recap/gov.uscourts.nysd.612697/gov.uscourts.nysd.612697.1.0.pdf


Evaluating Localization

• Localization method: Identifies 
(small) subset of model 
components most responsible for 
memorizing example x
• Pruning, integrated gradients, etc.

• How to evaluate localization? 
• We don’t know the ground truth (where 

information is stored)
• We don’t even know if knowledge is 

really stored in a localized way!

• Do localization methods really 
localize memorized knowledge?

18



Pruning-based Localization

• Learn a “mask” in [0, 1]
• Loss #1: Retain 

memorization of 1 given 
document

• Loss #2: Make mask as 
sparse as possible

• Parameters 
corresponding to mask’s 
non-zero entries must be 
important

• Two variants called 
Slimming & Hard 
Concrete

19
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Benchmark #1: Injection-Based

• Idea: Inject new 
knowledge into model 
using only some 
parameters

21

1. Acquire new sentence 
not seen during pre-training

2. Fine-tune small subset of 
model parameters to 
memorize new sentence



Benchmark #1: Injection-Based

• Idea: Inject new 
knowledge into model 
using only some 
parameters

• Good: We have ground 
truth for evaluation

• Bad: Where we inject 
may not be where 
models “naturally” 
store knowledge

22

1. Acquire new sentence 
not seen during pre-training

2. Fine-tune small subset of 
model parameters to 
memorize new sentence

3. Run localization method 
on resulting model

4. Evaluate recall of 
compared with ground 
truth parameters



Benchmark #2: Deletion-Based

• Idea: Delete existing 
knowledge from model 
by removing the most 
important parameters

23

1. Find already-memorized 
sequence (quotes, ToS, etc.)

2. Run localization method 
on pre-trained model



Benchmark #2: Deletion-Based

• Idea: Delete existing 
knowledge from model 
by removing the most 
important parameters

• Good: Studies how 
LLM’s naturally 
memorize data

• Bad: No ground truth

24

1. Find already-memorized 
sequence (quotes, ToS, etc.)

2. Run localization method 
on pre-trained model

3. Delete (zero-out) 
identified parameters

4. Evaluate how much LLM 
forgets the sequence



Injection Benchmark Results

• Setting: Pythia-Deduped 2.8B, 0.1% of parameters fine-tuned

• Tested 4 models x 2 fine-tuning ratios x 3 recall levels:
Hard Concrete or Slimming always best (both pruning-based)

• All methods greatly outperform random baseline
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Deletion Benchmark Results

• Setting: Pythia-Deduped 2.8B, delete top 0.5% of parameters

• Tested 3 models x 2 removal ratios:
Hard Concrete or Slimming always best (both pruning-based)

• All methods greatly outperform random baseline
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Conclusion: Does Localization Work?

• Across two different localization 
benchmarks:
• Pruning-based methods always best

• All methods do something non-trivial

• Knowledge does appear to be stored 
in a localizable way

• Other results (see paper)
• Knowledge is distributed across layers, 

not localized to specific layers

• Early layers perform generally useful 
function, not specialized to single 
example
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Overview
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Understanding
How do LLMs 

memorize, do math, 
and learn from 

demonstrations?

Deqing
Fu

Tianyi
Zhou

Pre-trained Large Language 
Models Use Fourier Features 

to Compute Addition
NeurIPS 2024

Vatsal
Sharan



How do Language Models do Arithmetic?

• Setting: Fine-tune GPT-
2-XL for integer 
addition
• All numbers between 1 

and 520, so they are 
single tokens

• Accuracy ≈100%

• Model doesn’t 
memorize, it computes 
an answer!

• Some layers perform 
modular arithmetic

29

Correct 
answer: 108

Input: Put together 15 and 93.
Plot how each MLP layer contributes to prediction 

Promoting 
all even 

numbers 

Promoting all 
numbers that 

end in “8”



How do Language Models do Arithmetic?

• Setting: Fine-tune GPT-
2-XL for integer 
addition
• All numbers between 1 

and 520, so they are 
single tokens

• Accuracy ≈100%

• Model doesn’t 
memorize, it computes 
an answer!

• Some layers perform 
modular arithmetic

• Others approximate the 
answer

30

Correct 
answer: 108

Input: Put together 15 and 93.
Plot how each MLP layer contributes to prediction 

Promoting all 
numbers close 

to 108



Layer-wise logits are sparse in Fourier domain

• Both MLP and attention have outlier high-frequency components

• Periods correspond to common multiples (T=2, 5, 10)
31

Logits from MLP Layer 33 Logits from Attention Layer 40



Layer-wise logits are sparse in Fourier domain

• Same outlier frequencies appear across many layers

32



What do different frequencies do?

33

• Low frequency: Peaks at roughly the right answer (approximation)

• High frequency: Knows the right answer mod 2, 5 (classification mod n)



What do different frequencies do?

• Low frequency: Peaks at roughly the right answer (approximation)

• High frequency: Knows the right answer mod 2, 5 (classification mod n)

• Mechanism: The sum of these waves “peaks” at the right place
34



Fourier features causally impact predictions

• Idea: Project out 
dimensions of the 
hidden state that 
correspond to {low, 
high}-frequency logit 
waves

35

Low frequency High frequency



Fourier features causally impact predictions
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Filter out high 
frequency components

• Idea: Project out 
dimensions of the 
hidden state that 
correspond to {low, 
high}-frequency logit 
waves



Fourier features causally impact predictions
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Filter out low 
frequency components• Idea: Project out 

dimensions of the 
hidden state that 
correspond to {low, 
high}-frequency logit 
waves



Fourier features causally impact predictions
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dimensions of the 
hidden state that 
correspond to {low, 
high}-frequency logit 
waves



Fourier features causally impact predictions

39

Fourier 
Component 
Removed

From which 
model 
layers?

Accuracy

None - 99.7%

Low-Frequency Attn & MLP 5.9%

High-Frequency Attn & MLP 27.1%

Low-Frequency Attn only 99.1%

High-Frequency Attn only 78.4%

Attention 
important for 
high 
frequencies

Both ablations 
have large 
effect

• Idea: Project out 
dimensions of the 
hidden state that 
correspond to {low, 
high}-frequency logit 
waves



Fourier features causally impact predictions
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Fourier 
Component 
Removed

From which 
model 
layers?

Accuracy

None - 99.7%

Low-Frequency Attn & MLP 5.9%

High-Frequency Attn & MLP 27.1%

Low-Frequency Attn only 99.1%

High-Frequency Attn only 78.4%

Low-Frequency MLP only 35.9%

High-Frequency MLP only 98.1%

Attention 
important for 
high 
frequencies

MLP 
important for 
low 
frequencies

Both ablations 
have large 
effect

• Idea: Project out 
dimensions of the 
hidden state that 
correspond to {low, 
high}-frequency logit 
waves



Fourier ablations have predictable effects

Filter Low-Freq from MLP

• Removes ability to approximate the answer

• Still correct modulo 10!

• MLP + low-freq does approximation

Filter High-Freq from Attn

• Removes ability to be correct mod 10

• Still approximately correct!

• Attention + high-freq does classification 
mod n (modular addition)
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Fourier features come from pre-training

Interpretability Evidence

• Visualize Fourier Transform of pre-trained 
token embeddings of integers

• Aggregate with L2 norm across all dimensions

• Same outlier frequencies present

Experimental Evidence

• Randomly initialized model cannot achieve 
good accuracy after fine-tuning
• 94% test accuracy after much longer training
• Does not learn high-frequency Fourier 

components, makes many off-by-one errors

• Pre-trained token embeddings rescue 
performance + fast convergence
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No Fourier sparsity without Pre-training

• Same figure as before, but for randomly initialized + fine-tuned GPT-2-XL architecture

• Only low-frequency components: Model can approximate but not compute mod 2
• Explains why almost all errors are off-by-1

43
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LLMs and in-context learning

• GPT-J (6B) with 4-shot in-context learning (72% accuracy)

• Very similar Fourier features as fine-tuned GPT-2-XL
44



Conclusion: LLMs and arithmetic

• Arithmetic is not like 
factual recall: LLM 
computes the answer

• Model combines 
“waves” of different 
frequencies to deduce 
precise answer

• Pre-training learns 
features that enable this 
precise mechanism

45
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Understanding
How do LLMs 

memorize, do math, 
and learn from 

demonstrations?

Deqing
Fu

Tianqi
Chen

Transformers Learn Higher-
Order Optimization Methods 

for In-Context Learning: A 
Study with Linear Models

NeurIPS 2024

Vatsal
Sharan



How do Models do In-Context Learning?

47

In-Context Learning

Do Transformers really learn 
to implement gradient 

descent for ICL?



Transformers learn higher-order optimization
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Conclusion: How Transformers do ICL 

• Transformers converge too fast 
to be doing gradient descent 

• They are much more similar to 
Iterative Newton

• LSTMs learn a very different 
algorithm (more like OGD)

• Can we use these insights to 
make future models more 
precise?
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Comparisons across architectures

50

Improve over layers Improve over iterations No improvement over layers
(More like online GD)
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Leveraging
How can we 

combine LLMs with 
symbolic solvers for 

planning tasks?

Language Models can Infer Action 
Semantics for Classical Planners from 

Environment Feedback
(in submission)

Wang (Bill)
Zhu

Jesse 
Thomason

Ishika
Singh



A Challenging Planning Problem

• You control 2 robots that use 2 different 
colors (red, blue) to paint patterns in floor 
tiles

• Robots can move in four directions (up, 
down, left and right)

• Robots paint with one color at a time, and 
can change their spray guns to any color 

• Robots can only paint the tile that is in front 
(up) and behind (down) them

• Once a tile has been painted, no robot can 
stand on it.

53
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How to solve?

Symbolic Solver

• Pros: Dedicated search 
algorithms for long-term 
planning

• Cons: Requires an expert to 
formally specify rules of the 
environment 

Large Language Model

• Pros: Natural language 
understanding (could interpret 
the description directly)

• Cons: Cannot do long-term 
planning

• Pros: Reasonably good at 
outputting formal 
specifications

54

Idea: Use LLM to generate a formal specification, 
then feed it to the solver to generate final plan! 



Baselines

• LLM by itself cannot 
directly predict a 
good sequence of 
actions

55
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Baselines

• LLM by itself cannot 
directly predict a 
good sequence of 
actions

• LLM struggles to 
generate correct 
formal specifications

• How to fix? 
Environment 
feedback!

56
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Combining LLMs and Solvers

• LLM generates formal specification for 
symbolic solver based on natural language 
description
• Requirements and effects of each action

• Ask solver to find a plan to reach the goal 
based on this specification

• If plan found, execute it in environment
• If it works: Done!
• Otherwise: Environment gives feedback to LLM

• If plan not found: Try some partial plan in 
the environment, provide feedback to LLM

• LLM takes feedback from environment and 
refines the specification for solver

57
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Baselines

• LLM by itself cannot 
directly predict a 
good sequence of 
actions

• LLM struggles to 
generate correct 
formal specifications

• With environment 
feedback: LLM can 
try new 
interpretations until it 
finds one that works!
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Conclusion: LLMs and Planning

• Starting point: Recognize strengths 
and weaknesses of LLMs, other 
tools

• LLMs can be useful for
• Deciphering natural language 

descriptions

• Interacting with formal tools

• Outputs are often not entirely 
correct, but can be refined with 
good feedback

59
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Broader Conclusions

• Scientific study of LLMs is 
necessary and can yield actionable 
insights

• Studying memorization can guide 
policy, copyright compliance 

• Studying model internals can enable 
us to fortify them to improve 
reliability

• Studying LLM weaknesses helps us 
identify complementary modules
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Thank you!
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