
CSCI 699: The Science of Large Language Models
Lecture Notes on Language Models and Transformers

Robin Jia

Fall 2024

Chapter 1

Language Models

In this class, we will focus on autoregressive language models (LMs). This stands in
contrast to models like BERT, which are masked language models. Informally, an autore-
gressive language model predicts the next token in a document given all previous tokens.

1.1 Formal Definition

Let w1, . . . , wT denote the first T tokens of a document.1 We assume that all tokens in
the world (including w1, . . . , wT) come from a known, finite set of possible tokens V , often
referred to as the vocabulary (you can think of this as the set of all English words).

An autoregressive language model with parameters θ defines a probability distribution
over the next token in the document, wT+1, given any prefix of tokens w1, . . . , wT :

pLM(wT+1 | w1, . . . , wT ; θ).

Since all tokens come from the vocabulary V , pLM outputs a distribution over the |V | possible
next tokens. We can view this as a vector in R|V |, or more specifically, a vector in the |V |-
dimensional simplex ∆|V |. Recall that the n-dimensional (probability) simplex ∆|V | is defined
as the set of points v ∈ Rn that satisfy:

vi ≥ 0 ∀ i = 1, . . . , n
n∑

i=1

vi = 1.

This is the space of valid probability distributions over |V | objects.

1.2 Probabilities over sequences

Since an autoregressive LM produces a probability distribution given any prefix of any length
T , it also defines a valid probability distribution over |V |k, the set of length-k strings whose

1If you are unfamiliar with tokenization, you can think of each “token” as a word for now. Later, we will
discuss the difference between words and tokens.

1

elements come from V , for any positive integer k. For any string s = w1, . . . , wT , we define
the overall probability assigned to s by the language model with parameters θ as

pLM(w1, . . . , wT ; θ) =
T∏
t=1

pLM(wt | w1, . . . , wt−1; θ).

1.3 Autoregressive pre-training

Pre-training an autoregressive LM is straightforward. We obtain a large dataset D of docu-
ments, each of which is a sequence of tokens s = [s1, . . . , sT]. On this dataset, we can write
down the overall cross-entropy loss for the model parameters θ:

L(θ) =
1

|D|
∑
s∈D

T∑
t=1

log pLM(st | s1, . . . , st−1; θ).

This is a standard loss function that sums of the log-likelihood of every token given its
prefix, and averages this across the entire dataset. We will learn all model parameters θ to
minimize this objective.

For pre-training large language models, it is common to optimize this objective using
stochastic gradient descent with a relatively large batch size, and to do only a single pass
over the training data (to a first approximation).

1.4 Usage and efficiency considerations

The most common way to use an autoregressive LM is to generate a continuation of an
input prefix w1, . . . , wT . By continuation, we just mean a sequence of k plausible tokens
wT+1, . . . , wT+k that could be the next k tokens in the document.

Given this common use case, it would be highly desirable for the computation of

pLM(wT+2 | w1, . . . , wT , wt+1 | θ)

to be able to reuse work done to compute

pLM(wT+1 | w1, . . . , wT | θ),

and so on. This property is a key design consideration for the two most popular families of
autoregressive LMs: recurrent neural networks (RNNs), which include models like LSTMs,
and Transformers, the subject of this class.

2

Chapter 2

Transformers

ATransformer is a type of neural network architecture that can be trained as an autoregres-
sive language model. In these notes, we will focus on the special case of Transformer-based
autoregressive LMs, and refer to these as Transformers for short. Note that it is also pos-
sible to use Transformers in other ways. In addition, we will follow one particular common
Transformer variant, but many slight variants are also possible and in use.

2.1 Architecture overview

We first given an overview of the Transformer architecture before diving into each component
ind etail. Recall that the input to the model is a sequence of tokens w1, . . . , wT , and the
output is a vector in the simplex ∆|V |. A Transformer has two key hyperparameters, the
hidden dimension d and number of layers L. It processes its input in three steps:

1. Each input token wt is first mapped to a corresponding token embedding xt ∈ Rd.
This is necessary because all other model components operate on vectors, so we must
communicate the input sequence to them in vector format.

2. For each layer ℓ = 1, . . . , L, and each token t = 1, . . . , T , a hidden state hℓ
t ∈ Rd is

computed based on the update rule:

hℓ
t = hℓ−1

t + aℓt +mℓ
t. (2.1)

The base case h0
t is defined to be xt. aℓt and mℓ

t are the outputs of the ℓ-th multi-
headed attention layer and the ℓ-th Feedforward Network/Multi-layer Perceptron layer,
respectively, at position t. We will define those in subsequent sections. At a high level,
the multi-headed attention layer is responsible for retrieving relevant information about
previous tokens and incorporating that into the representation for the current token.
The feedforward network does additional non-linear processing about the information
we have accumulated so far about the current token.

3. The final hidden state for the last token, hL
t , is mapped to the final output, a vector

in ∆|V |, by computing

Softmax(W unembed · LayerNorm(hL
t)).

3

W unembed is a parameter matrix ∈ Rd×|V |, and LayerNorm is the layer normalization
operation (to be described in detail later), which maps vectors in Rd to other vectors
in Rd. Softmax transforms a vector v ∈ Rn into a new vector of the same dimension
as defined by the following:

Softmax(v) =

[
ev1∑n
i=1 e

vi
, . . . ,

evn∑n
i=1 e

vi

]
Softmax transforms the vector v into a new vector whose entries are all positive (since
ex is always positive) and sum to 1, so this is a valid probability distribution as desired.
It also preserves the relative ordering of all the entries, e.g., if the largest entry of v is
at index i, then the largest entry of Softmax(v) is also at index i, and so forth.

2.1.1 The Residual Stream

Note that we can unroll the hidden state recurrence and write the final hidden state hL
t as

hL
t = xt +

L∑
ℓ=1

aℓt +mℓ
t.

The final hidden state is simply the sum of many different modules of the Transformer model;
it is incrementally updated over the layers. Since the practice of adding new components
to the previous layer’s hidden state is often referred to as using “residual connections,” the
incrementally updating hidden state of the Transformer is often referred to as the residual
stream.

2.2 Layer Normalization

We’ve mentioned a mysterious operation called Layer Normalization. Before we go any
further, let’s address what that is. Layer Normalization (LN) is just a particular type of
neural network layer. It takes in a vector and transforms it according to a couple learnable
parameters. This transformation includes a “normalization” step that ensures that all the
entries in the vector are on a reasonable “scale,” i.e., they’re not all really big numbers or
really small numbers.

2.2.1 Layer Normalization definition

A Layer Normalization layer takes as input a vector x ∈ Rn and outputs a vector of the
same dimension through the following steps:

1. Compute the mean of x:

µ =
1

n

n∑
i=1

xi.

4

2. Compute the standard deviation of x:

σ =

√√√√ 1

n

n∑
i=1

(xi − µ)2

3. Renormalize x to have 0 mean and unit variance:

x̃ =
x− µ

σ

4. Rescale and shift this normalized vector by a learned elementwise scale a ∈ Rn and
shift b ∈ Rn, and return this quantity:

LayerNorm(x) = a⊙ x̃+ b,

where ⊙ denotes elementwise multiplication.

Let’s walk through a simple example: say we have x = [100, 200, 100, 0]. We can compute

the mean µ = 100 and the standard deviation σ =
√

1
4
· (02 + 1002 + 02 + 1002) =

√
5000 ≈

71. The normalized vector x̃ is thus

[0, 100, 0,−100]/71 ≈ [0, 1.4, 0,−1.4].

The final output will be shifted by b and scaled by a, so it is

[b1, 1.4 · a2 + b2, b3,−1.4 · a4 + b4].

2.2.2 Motivation

Why is LN useful? Roughly speaking, you want everything in your network to have roughly
zero mean and unit variance, because really large numbers mess with optimization (gradients
can get very big, so you don’t converge), as do really small numbers (gradients can get very
small, so you make little progress on each gradient step). But you also want to be able to have
some flexibility in the scale of your values, so you include the learned a and b parameters.

2.2.3 Post-LN or Pre-LN?

In the original Transformer architecture, Layer Normalization was applied after every resid-
ual connection, referred to as “Post-LN.” However, current common practice is instead to
apply Layer Normalization right before computing either the MHA or FFN layer, referred
to as “Pre-LN.” Refer to Figure 2.1 for an illustration.

5

Figure 2.1: Illustration of the residual stream for a model that uses (a) post-Layer Normal-
ization and (b) pre-Layer Normalization. The current standard is to use pre-Layer Normal-
ization. Taken from https://arxiv.org/abs/2002.04745.

2.2.4 RMSNorm: A simpler Layer Normalization

While Layer Normalization was used in the original Transformer, Zhang and Sennrich later
proposed RMSNorm as a simpler alternative.1 Given a vector x, RMSNorm computes

RMSNorm(x) = a⊙ x

RMS(x)

where a ∈ Rn is a learned elementwise scale parameter, and RMS denotes the root-mean-
square operation:

RMS(x) ≜

√√√√ 1

n

n∑
i=1

x2
i .

Compared to standard Layer Normalization, RMSNorm requires fewer steps, as it only com-
putes RMS as opposed to computing the mean and then standard deviation; thus, it offers
a slight efficiency boost. The intuition is that the most important thing to normalize is the

1https://arxiv.org/abs/1910.07467

6

https://arxiv.org/abs/2002.04745
https://arxiv.org/abs/1910.07467

scale of the inputs, rather than their average value. Because it is slightly faster, RMSNorm
is commonly used in modern Transformers.

To compare this with standard Layer Normalization, let’s use the same example x =

[100, 200, 100, 0]. We directly compute the RMS as
√

1
4
· (02 + 1002 + 2002 + 1002) ≈ 122, so

we have
x̃ = [100, 200, 100, 0]/122 ≈ [0.8, 1.6, 0.8, 0],

and so the final output with the scale is

[0.8 · a1, 1.6 · a2, 0.8 · a3, 0].

2.3 Token embeddings

Let’s move on to the first step of the Transformer: converting the sequence of input tokens
w1, . . . , wT into a corresponding sequence of vectors x1, . . . , xT , where each xt ∈ Rd.

At a high level, each xt is the sum of two vectors: one that encodes the identity of the
token wt, and one that encodes the index t of that token. An alternative, called relative
positional embeddings, omits the second vector, and instead uses different mechanisms to
keep track of the position of each word.

2.3.1 Vocabulary embeddings

First, recall that every token comes from the finite set V . We can easily assign each unique
token in the vocabulary a unique number from 1, . . . , |V |. So, we will now treat each token
w1, . . . , wn as an integer between 1 and |V |.

The token embeddings of the model are represented by a single matrix W embed of dimen-
sion |V | × d. The token embedding layer simply maps each token wt to the wt-th row of
W embed, which we will denote as W embed[wt]. You can think of W embed as a big dictionary
that maps each possible token v ∈ V to a corresponding vector.

2.3.2 Tokenization

We keep referring to “tokens” rather than words. The reason for this is that everything here
depends on V being a finite set, whereas the set of possible “words” is virtually infinite.
Imagine new fictional characters, or typos of words—the model should not break when these
words are passed in as input. To handle this problem, most modern language models em-
ploy subword tokenization, meaning that they split (some) words into multiple tokens.
In particular, one popular strategy for subword tokenization is called byte pair encoding
(BPE). I will not go into the details of BPE here, but just think of it as a way to choose a
vocabulary V of subword tokens such that any possible word can be broken down determin-
istically into one or more subword tokens. Common words will generally be a single subword
token, whereas rare words will be split into many subword tokens.

Figure 2.2 shows how an example sentence with some rare words (Lord of the Rings
entity names) is tokenized by the GPT-4 tokenizer. We can see that it splits rare words like

7

“Aragorn,” “Frodo,” and “Lothlorien” into multiple tokens. In contrast, a long but common
word like “instructed” is represented as a single token.

Figure 2.2: How the GPT-4 tokenizer processes the sentence “Aragorn instructed Frodo
to mind Lothlorien.” We can see that rare words are split into multiple tokens, while
common words tend to be single tokens. Visual taken from https://platform.openai.

com/tokenizer.

2.3.3 Absolute positional embeddings

We also need some way to tell the model which index in the sequence each token comes from.
One standard way to do this is called absolute positional embeddings. We simply learn a
separate positional embedding pt ∈ Rd for each possible index t. The final token embedding
for token t is the sum of the embedding for that token and the sum for its position:

xt = W embed[wt] + pt.

2.3.4 An alternative: Relative positional embeddings

Instead of absolute positional embeddings, modern Transformers tend to use one of several
different relative positional embedding methods. These do away with the absolute
positional embeddings and use a different mechanism to tell the model the order of the tokens.
We will discuss one particular strategy called Rotary Positional Embeddings (RoPE), used
by Llama-3, in the next class.

8

https://platform.openai.com/tokenizer
https://platform.openai.com/tokenizer

2.4 Multi-headed Self Attention Layers

The signature component of a Transformer is the Multi-headed Self Attention (MHA)
layers. There is one MHA layer at each layer ℓ of the Transformer. An MHA layer takes in
a sequence of vectors u1, . . . , uT ∈ Rd, of which uT is the vector for the current timestep. It
produces a vector of the same dimension.

MHA is a critical component of Transformers because it is the only component where
information flows from one token to another. This is of course critical, as predicting the
next token must involve incorporating information about all the past tokens in the sequence,
not just the most recent one. Through the attention mechanism, the model learns which
information from which tokens is relevant to the current prediction, and is able to access
that information while ignoring other information.

As one simple example, consider a sentence like, “Susan disliked Joe Biden because he. . . ”
What comes next? Well, we have to understand that “he” must refer to “Joe Biden” and
not to “Susan.” Thus, what comes next must be a description of Biden. On the other hand,
suppose that the sentence started, “Susan disliked Joe Biden because she . . . ” Now, we
understand that “she” refers to “Susan,” so what comes next is likely a description of her
views; we may know something about her views from the earlier context of the document,
or we can infer from this snippet that her views are opposed to Biden’s. In either case,
it is important to understand the coreference relationship between the pronoun and its
antecedent—the noun it refers to. These sorts of relationships between words are well-
captured by attention, which will allow the model to “attend” back to either the word
“Susan” or “Biden” when processing the pronoun. By gathering information about the
antecedent, the model can make a more reasonable prediction of what comes next.

2.4.1 Single-headed self attention

To understand MHA, we must first understand “single-headed” self attention, and then
generalize to the multi-headed case.

The attention head produces a vector of dimension dattn, which is a hyperparameter (and
is generally < d). A single self attention head is parameterized by three weight matrices
WQ, WK , and W V , short for query, key, and value, respectively. Each of these is a dattn × d
matrix This output is produced as follows:

1. The current input vector uT is multiplied by WQ to yield the query vector qT

2. The input vectors u1, . . . , uT are multiplied by WK and W V to yield key and value
vectors, respectively:

kt = WK · ut, ∀ t = 1, . . . , T ;

vt = W V · ut, ∀ t = 1, . . . , T.

3. The query vector is dot producted with each key vector, computing a “matching score”
st between the query and each key vector. This score is then normalized by

√
dattn:

st =
q⊤T kt
dattn

∀ t = 1, . . . , T.

9

4. These matching scores are then transformed via softmax to yield probabilities p1, . . . , pT :

[p1, . . . , pT] = Softmax([s1, . . . , sT]).

5. Finally, these resulting probabilities are treated as weights and a weighted sum of the
value vectors is computed as the final output:

T∑
t=1

ptvt.

Figure 2.3: Illustration of one attention head, for an input sequence of length T = 4.
We compute the dot product between the current query vector q4 and each key vector
k1, k2, k3, k4. The dot products are normalized to a probability distribution with softmax.
Finally, we compute a weighted average of the value vectors using these probabilities.

Overall, what does this attention head do? It first tries to look for “relevant” previous
tokens to the current token. Relevance is defined by the WK and WQ matrices: WK projects
the ut’s down to a lower dimension, preserving some information but erasing other informa-
tion, and WQ similar projects uT down to a lower dimension to encapsulate what sorts of
information this query is “looking for.” Dot products are used to identify the most relevant
indices, which get turned into the highest-weight indices after softmax. The weighted sum
then grabs the corresponding information (in value vectors)

One helpful analogy could be the following:

10

• Query vector: A search query that a user types into a search engine (e.g., Google)

• Key vectors: A set of keywords from each webpage crawled by the search engine.

• Value vectors: The corresponding webpage itself, which is what the user actually wants
to receive.

2.4.2 Multi-headed self attention

Now that we understand what a single head does, let’s look at a full MHA layer. Recall that
the MHA layer takes in vectors u1, . . . , uT of dimension d, and outputs a vector of the same
dimension.

A full MHA layer is composed of nattn attention heads (this is another hyperparameter).
Each of them will usually have a head dimension of dattn = d/nattn. They each have their
own separate parameter matrices, so in total we would have parameter matrices WK

i , WQ
i ,

and W V
i for each i = 1, . . . , nattn. Finally, the MHA layer has one final parameter matrix

WO of dimension d× d, which aggregates the outputs of all the heads into a final output.
The output of an MHA layer is defined as the following:

• Each of the nattn attention heads is run on the input sequence in parallel, yielding head
vectors o1, . . . , onattn .

• These vectors are concatenated together and multiplied byWO to yield the final output:

MHA(u1, . . . , uT) = WO · [o1; · · · ; onattn]

Note that due to how we defined dattn, the concatenation of all the nattn vectors will exactly
be of dimension d.

2.4.3 Use in Transformers

Now that we understand what an MHA layer does in isolation, let’s return to how it is used
in a Transformer.

A Transformer has one MHA layer, which we denote MHAℓ, for each layer ℓ = 1, . . . , L.
MHAℓ is used at layer ℓ to compute aℓt from Equation 2.1, for all timesteps t. The input to
MHAℓ at time t is the list of hidden states from the previous layer across all timesteps after
applying Layer Normalization. In other words, we have

aℓt = MHA([LayerNorm(hℓ−1
1), . . . ,LayerNorm(hℓ−1

t)]).

2.4.4 Grouped Query Attention

A small optimization done in some modern Transformers, including the Llama-3 models,
is Grouped Query Attention (GQA). The idea is simply that we will group some of the
attention heads together, and within each group we will tie some of their weights together.
In particular, attention heads in the same group have the same WK and W V matrices, and
thus have the same key and value vectors. This saves us time, since we only have to compute

11

the key and value vectors once within each “group.” However, they will still have different
WQ matrices, and so they will produce different query vectors and thus different attention
distributions and final outputs. Refer to Figure 2.4 for an illustration.

Figure 2.4: Illustration of grouped query attention. Each head has its own query vectors,
but some heads share the same key and value vectors. Figure taken from https://arxiv.

org/abs/2305.13245.

As an example, Llama-3 8B has 32 total attention heads per layer, but only 8 key/value
heads. This means that the 32 attention heads are divided into 8 groups of 4 each; within
each group, the key and value vectors are identical, but the query vectors are different.

2.5 Feedforward Network/Multi-Layer Perceptron

2.5.1 Feedforward networks

A feedforward network (FFN) layer, also known as a multi-layer perceptron, is a
neural network layer that maps an input vector x ∈ Rm to an output vector y ∈ Rn, for
some fixed dimensions m and n. FFNs are the prototypical neural network, as even a simple
two-layer FFN is powerful enough to approximate any function, given a large enough hidden
dimension.

Formally, a two-layer FFN is given by the equation

y = W (2) · f
(
W (1) · x+ b(1)

)
+ b(2)

where W (1) ∈ Rh×m, b ∈ Rdh , W (2) ∈ Rdh×n, b(2) ∈ Rn, and f is an elementwise non-linear
function. dh is a constant dimension often referred to as the hidden dimension. One can see
how this could be easily extended to three or more layers.

The non-linearity f , also called the activation function, is crucial for ensuring that the
overall output of the FFN y is a non-linear function of the input x. Common choices for f
include the sigmoid function f(z) = 1

1+e−z and the Rectified Linear Unit (ReLU) function
f(z) = max(z, 0). Note that following common practice, we abuse notation and allow a
function f : R → R to be applied to a vector by applying f elementwise (i.e., separately to
each element of that vector).

12

https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2305.13245

2.5.2 Use in Transformers

A Transformer has one FFN, which we denote FFN ℓ, for each layer ℓ = 1, . . . , L. FFN ℓ is
used at layer ℓ to compute mℓ

t from Equation 2.1, for all timesteps t. It is standard to use a
two-layer FFN for this purpose. Each FFN has input dimension d and output dimension d.
The hidden dimension dh is a hyperparameter, and may be different from d (for example, in
Llama-3 8B, d = 4096 and dh = 14336) but is the same for all layers ℓ.

The input to the FFN at layer ℓ is the current value of the residual stream, which is
the previous hidden state hℓ−1

t plus the current layer’s attention aℓt. This quantity is first
transformed by LayerNorm, then fed to the FFN. Formally, if FFN ℓ denotes the FFN at
layer ℓ, we have

mℓ
t = FFN ℓ(LayerNorm(hℓ−1

t + aℓt)).

Use of biases. In some cases, the bias vectors are omitted from the FFN, as they are
viewed as unnecessary. For example, Llama-3 omits bias terms, but BERT and GPT-2 have
them.

GLU variants. Some modern Transformers, including Llama-3, use a different type of
FFN that has a gated linear unit (GLU). GLU variants are different in that the first layer
actually applies two different linear transformations to the input. These are then elementwise
multiplied, with a non-linearity function applied to one of them. For example, Llama-3 uses
a particular GLU function known as SwiGLU, which does the following

FFN ℓ(x) = W (3) ·
(
Swish(W (1) · x)⊙ (w(2) · x)

)
.

Note that there are now three weight matrices and three matrix-vector multiplications instead
of two. Swish is a particular elementwise non-linear function, similar to ReLU:

Swish(z) = z · σ(x),

where σ is the familiar sigmoid function. Note that ReLU is exactly this but replacing
sigmoid with the step function ⊮[x > 0].

Here is what the SwiGLU paper says on why this works well: “We offer no explanation
as to why these architectures seem to work; we attribute their success, as all else, to divine
benevolence.”2

2.6 Runtime and Memory Usage

2.6.1 Test time

Suppose we wish to generate a sequence of total length T using a Transformer. To do this,
we must first choose the first token w1, then the next token w2, and so on until wT . How
expensive is each step? We claim that the t-th step requires O(td + d2) time and O(td)
memory (not counting the parameters themselves).

2https://arxiv.org/pdf/2002.05202

13

https://arxiv.org/pdf/2002.05202

The key thing to note is that at each step t, we only have to compute the hidden states for
the current timestep, as long as we have stored the hidden states from all previous timesteps.

The two expensive steps are the MHA and FFN layers. Let’s analyze the FFN layer first,
since it’s simpler. The main cost of the FFN is the two matrix-vector multiplications. Each
of these takes time O(d·dh). For simplicity, let’s assume that dh is O(d) (in practice, the FFN
hidden dimension does generally scale linearly with the overall Transformer dimension), so
this is O(d2). In terms of memory, we only need O(d) memory (not counting the parameters)
to store the intermediate results of the computation.

Now let’s look at the MHA layer. It essentially involves two steps. First, the key, query,
and value vectors must be computed. Luckily, most of them have been computed before,
so we just store then in memory—this requires O(td) memory since it’s O(t) vectors of
dimension d. This is often referred to as the “KV cache” (for key-vector). Only the key,
query, and value for the current token must be newly computed: each of those is a single
matrix-vector multiply, which is O(d2) (as dattn ≤ d). Second, we compare the current query
vector to every key vector, and then use the derived weights to aggregate across all the value
vectors. This step is O(td), since we are doing d-dimensional vector operations on t vectors.

Putting this all together, we see indeed that our runtime is O(td+d2) for the t-th step and
we use O(td) memory (for all the KV caches). Thus, overall the runtime is

∑T
t=1O(td+d2) =

O(T 2d+ Td2). The bad news is here is that Transformers have quadratic runtime in the
length of the sequence. The good news is that d is actually often larger than T (though this
can change depending on how long of a context your model was trained to handle), so your
runtime might be dominated by the O(td2) portion anyways. The total memory needed at
any given time is at most O(T) (at the last step), i.e., Transformers have linear memory
usage in the length of the sequence.

2.7 Parameter counting exercise

Let’s see if we can re-produce Llama-3 405B’s parameter count. They list:

• L = 126 layers

• d = 16, 384 as the model dimension

• dh = 53, 248 as the FFN dimension

• nattn = 128 attention heads

• From that, we can infer that dattn = 16, 384/128 = 128

• 8 key/value heads (i.e., heads are in 8 groups of 128/8 = 16)

• Vocabulary size |V | = 128, 000.

Let’s count up the parameters needed.

• Token embeddings: W embed is 128, 000× 16, 384 = 2, 097, 152, 000 ≈ 2.1B

14

• MHA WK matrices: Each one is 128× 16, 384, there are 8 per layer, and there are 126
layers, so the count is 126× 8× 128× 16384 = 2, 113, 929, 216 ≈ 2.1B.

• MHA W V matrices: Same computation, so another 2.1B parameters.

• MHA WQ matrices: Similar to the above, except there are 128 per layer instead of 8,
so we have 33, 822, 867, 456 ≈ 33.8B parameters.

• MHA WO matrices: We have one per layer, and they are 16, 384 × 16, 384, so 126 of
them is 33, 822, 867, 456 ≈ 33.8B parameters.

• FFN weight matrices: We have three per layer, and they are 16, 384×53, 248, so 126×3
of them is 109, 924, 319, 232× 3 = 329, 772, 957, 696 ≈ 329.8B parameters.

• FFN second layer weights: Same size as the first layer, so another 109.9B parameters.

• RMSNorm: We do RMSNorm twice per layer, and again at the end, so there’s a total
of 2×126+1 = 253 of them. Each one has 16, 384 parameters (since it’s an elementwise
scaling factor), so the total count is 253× 16, 384 = 4,145,152 (negligible)

• Unembedding matrix: W unembed is 16, 384×128, 000, so the same number of parameters
as W embed, or ≈ 2.1B.

If we count this all up, we have approximately

4× 2.1B + 2× 33.8B + 329.8B = 405.8B.

So yes, Llama-3 does have 405 billion parameters (rounding down)!
We notice that the majority of parameters are actually found in the FFN layers (329.8B/405.8B ≈

81%), rather than the attention layers. By comparing the number of parameters for WQ

and WK , we can see how grouped query attention reduces the number of parameters. The
embedding and unembedding layers are also non-trivial in size, whereas RMSNorm includes
only a neglible number of parameters.

15

	Language Models
	Formal Definition
	Probabilities over sequences
	Autoregressive pre-training
	Usage and efficiency considerations

	Transformers
	Architecture overview
	The Residual Stream

	Layer Normalization
	Layer Normalization definition
	Motivation
	Post-LN or Pre-LN?
	RMSNorm: A simpler Layer Normalization

	Token embeddings
	Vocabulary embeddings
	Tokenization
	Absolute positional embeddings
	An alternative: Relative positional embeddings

	Multi-headed Self Attention Layers
	Single-headed self attention
	Multi-headed self attention
	Use in Transformers
	Grouped Query Attention

	Feedforward Network/Multi-Layer Perceptron
	Feedforward networks
	Use in Transformers

	Runtime and Memory Usage
	Test time

	Parameter counting exercise

