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Review: Neural networks as feature learners
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Input x

Classifier 2: 
Is left clear?

0

1

0

Classifier 4: 
Where to go?

Output y
Turn left 

Learn to classify based on features 
(same as linear model)

Learn a classifier whose output is a good feature
We don’t tell the model what classifier to learn

Model must learn that “is front clear” is a useful concept 



A hierarchy of features

• Turn left?
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Look at whole image



A hierarchy of features

• Turn left?

• Front is clear?
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Look at large area



A hierarchy of features

• Turn left?

• Front is clear?

• Is object a moose?
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Look at smaller area



A hierarchy of features

• Turn left?

• Front is clear?

• Is object a moose?

• Is this a head?
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Look at smaller area



A hierarchy of features

• Turn left?

• Front is clear?

• Is object a moose?

• Is this a head?

• Is this an antler?
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Look at smaller area



A hierarchy of features

• Turn left?

• Front is clear?

• Is object a moose?

• Is this a head?

• Is this an antler?

• Is this a line?
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Look at tiny patch



Learning features hierarchically

• Today: Process images by 
learning features hierarchically

• Start with most basic features on 
smallest patches (e.g., a line)

• Based on those, identify more
complex features (e.g., a moose)
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Outline

• Extracting features with convolutions

• Convolutional Neural Networks

• Computer vision tasks
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A moose detector

• Suppose you have a 
classifier that can tell if 
a region has a moose

• How to use it to create a 
useful feature vector?

• Slide it over each region 
and check if there’s a 
moose there!
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No moose
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A moose detector

• Suppose you have a 
classifier that can tell if 
a region has a moose

• How to use it to create a 
useful feature vector?

• Slide it over each region 
and check if there’s a 
moose there!
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Moose!



A moose detector

• Suppose you have a 
classifier that can tell if 
a region has a moose

• How to use it to create a 
useful feature vector?

• Slide it over each region 
and check if there’s a 
moose there!

• We just did a convolution!
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Moose in far left?
Moose in center left?
Moose in center right?
Moose in far right?

Learned
features

Moose!No 
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No 
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No 
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An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?
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An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?
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An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?
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An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?
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An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?
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An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?
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An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?
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An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?
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Convolutions

• Convolution is an operation that takes 
in two matrices:
• Kernel: K x K matrix (e.g., K=3)
• Input: W x H matrix

• Output: (W-K+1) x (H-K+1) matrix
• ij-th element of output is dot product of 

kernel & input[i:i+K,j:j+K]
• (I’m 0-indexing in these slides)

• Convolutional Layer: Kernel is our 
weight/parameter, use convolution to 
extract features

• Note: Convolution is a linear
operation!
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Motivation #1: Local Receptive Fields

• Motivation #1: Each 
neuron should only 
look at a small 
patch of input

• Why? Local 
textures/shapes are 
useful

• First understand 
local patterns, build 
up to global 
understanding
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Look at tiny patch



Motivation #2: Weight Sharing

• Motivation #2: In each local 
receptive field, the same types of
features are useful
• Basic: Detecting edges

• More advanced: Detecting moose

• So, share the same kernel (i.e.
weights) for all image patches

• Convolutions encode translation 
equivariance
• If your image gets shifted, convolution 

outputs just get shifted too
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Convolutional vs. Fully Connected Layers

• Let’s count parameters needed
• Convolutional layer with K=3

• Kernel = 3 x 3 = 9 parameters

• Add a bias term = 10 parameters

• Fully connected layer with 30-dim input, 12-dim 
output needs 
• W: 30 * 12 = 360 parameters

• b: 12 parameters

• Total: 372 parameters

• Fewer parameters = need less data to learn 
useful features

• FC would have to learn to detect the same
feature (e.g., an edge) over and over again at
different locations
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Multiple Input Channels

• Input may have multiple input 
channels
• Color image has 3 “channels” for

red/green/blue

• Input is actually 3 x W x H

• Solution: Kernel must be of size 
Cin x K x K
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Multiple Output Channels

• What if you want more than one 
kernel?
• Can have multiple kernels, each to 

detect a different thing

• One for vertical lines, one for 
horizontal lines, etc.

• So the total size of kernel tensor is
Cout x Cin x K x K
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Stride and Padding

• Stride: As you slide across image, 
how big of a step do you take?
• Default: stride=1 pixel

• Can choose larger stride to reduce 
dimensionality

• Padding: Can pad the edges of 
images with 0’s
• For K=3 and no padding, width/height 

shrink by 2 each time

• Adding width-1 padding on each side 
prevents this

• For K=5, pad by 2, etc.

• Default: No padding
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Outline

• Extracting features with convolutions

• Convolutional Neural Networks

• Computer vision tasks
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Convolutional Neural Networks (CNNs)

• How to incorporate convolutions into a full model?

• Basic idea: Use convolutions at beginning, then fully connected
layer at end
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Convolutional Layers

• First step: Convolutional Layer + ReLU

• Analogous to Linear layer + ReLU
• Convolutional layer is just a special type of

linear layer with local receptive fields & 
weight sharing!

• So we again want to apply a non-linearity
after the linear operation

• ReLU is standard for CNNs
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Pooling

• Goal: Make receptive field bigger as 
we process the image
• Early: Look for edges (small patch)

• Later: Look for moose (larger patch)

• How do we do this? Pooling!

• Effectively we reduce resolution of 
input by a factor of P (often P=2)
• Average pool: Average in each 2x2 patch

• Max pool: Max in each 2x2 patch
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More Conv + ReLU + Pool

• Can stack multiple 
Conv + ReLU + pool 
blocks

• Similar to increasing
number of hidden
layers in MLP

• Deeper layers
convolutional layers 
have larger effective 
receptive field 
• Can learn higher-level 

concepts
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Fully connected layers

• At the very end, we want fully global processing

• Fully connected layers are good at this!

• First flatten from [channels x width x height] to a flat vector

• Then do a MLP (e.g., 2-layer neural network) on top
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Keeping the dimensions straight

• Suppose convolution kernels are 3x3, 10 output channels, pooling is 2x2, no padding, stride=1
• Each convolution operation loses 3-1=2 in width and height

• In code, also a “batch” dimension because we process all examples in batch together
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3 x 50 x 70 10 x 48 x 68 10 x 24 x 34 10 x 22 x 32 10 x 11 x 16 1760



Outline

• Extracting features with convolutions

• Convolutional Neural Networks

• Computer vision tasks
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Image classification
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• ImageNet dataset: 14M 
images, 1000 labels

• CNNs do very well at 
these tasks!



Progress on ImageNet

43Source: https://www.eff.org/files/AI-progress-metrics.html

• 2012: AlexNet
wins ImageNet 
challenge, 
marks start of 
deep learning 
era (and is a
convolutional
neural network)

• 2016: Machine 
learning 
surpasses 
human 
accuracy

https://www.eff.org/files/AI-progress-metrics.html


Object Detection

• Task: Identify 
objects, provide 
bounding boxes, 
and label them

• One strategy:
Propose
candidate
bounding boxes,
then classify each
box (possibly as 
nothing)

44



Semantic Segmentation

• Task: Predict a class label 
for each pixel
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Semantic Segmentation

• One strategy: Encoder-Decoder
• First do conv + ReLU + pooling as before

• Then do upsampling + conv + ReLU to generate an output of original size
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Conclusion

• Convolution: Restricted linear operation 
parameterized by a small kernel

• Convolutional layers extract useful 
features for images
• Motivation #1: Local Receptive Fields

• Motivation #2: Weight Sharing

• Standard CNN architecture
• Start: Convolutional layer + ReLU + Max

Pooling

• End: Fully connected layer
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