
Deep Learning for Images: 
Convolutional Neural 
Networks

Robin Jia
USC CSCI 467, Spring 2023

February 23, 2023



Review: Neural networks as feature learners

2

Input x

Classifier 2: 
Is left clear?

0

1

0

Classifier 4: 
Where to go?

Output y
Turn left 

Learn to classify based on features 
(same as linear model)

Learn a classifier whose output is a good feature
We don’t tell the model what classifier to learn

Model must learn that “is front clear” is a useful concept 



A hierarchy of features

• Turn left?

3

Look at whole image



A hierarchy of features

• Turn left?

• Front is clear?

4

Look at large area



A hierarchy of features

• Turn left?

• Front is clear?

• Is object a moose?

5

Look at smaller area



A hierarchy of features

• Turn left?

• Front is clear?

• Is object a moose?

• Is this a head?

6

Look at smaller area



A hierarchy of features

• Turn left?

• Front is clear?

• Is object a moose?

• Is this a head?

• Is this an antler?

7

Look at smaller area



A hierarchy of features

• Turn left?

• Front is clear?

• Is object a moose?

• Is this a head?

• Is this an antler?

• Is this a line?

8

Look at tiny patch



Learning features hierarchically

• Today: Process images by 
learning features hierarchically

• Start with most basic features on 
smallest patches (e.g., a line)

• Based on those, identify more
complex features (e.g., a moose)

9



Outline

• Extracting features with convolutions

• Convolutional Neural Networks

• Computer vision tasks

10



A moose detector

• Suppose you have a 
classifier that can tell if 
a region has a moose

• How to use it to create a 
useful feature vector?

• Slide it over each region 
and check if there’s a 
moose there!

11

No moose



A moose detector

• Suppose you have a 
classifier that can tell if 
a region has a moose

• How to use it to create a 
useful feature vector?

• Slide it over each region 
and check if there’s a 
moose there!

12

No moose



A moose detector

• Suppose you have a 
classifier that can tell if 
a region has a moose

• How to use it to create a 
useful feature vector?

• Slide it over each region 
and check if there’s a 
moose there!

13

Moose!



A moose detector

• Suppose you have a 
classifier that can tell if 
a region has a moose

• How to use it to create a 
useful feature vector?

• Slide it over each region 
and check if there’s a 
moose there!

• We just did a convolution!

14

0
0
1
0
…

Moose in far left?
Moose in center left?
Moose in center right?
Moose in far right?

Learned
features

Moose!No 
moose

No 
moose

No 
moose



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

15

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

Dot product
kernel & 

each image 
patchInput image

5x6 matrix

Output
3x4 matrix



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

16

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

3

Dot product
kernel & 

each image 
patchInput image

5x6 matrix

Output
3x4 matrix



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

17

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Input image
5x6 matrix

Convolve

3 -1

Output
3x4 matrix

Dot product
kernel & 

each image 
patch



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

18

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

3 -1 0

Dot product
kernel & 

each image 
patchInput image

5x6 matrix

Output
3x4 matrix



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

19

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

3 -1 0 0

Dot product
kernel & 

each image 
patchInput image

5x6 matrix

Output
3x4 matrix



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

20

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

3 -1 0 0

5

Dot product
kernel & 

each image 
patchInput image

5x6 matrix

Output
3x4 matrix



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

21

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

3 -1 0 0

5 -2

Dot product
kernel & 

each image 
patchInput image

5x6 matrix

Output
3x4 matrix



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

22

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

3 -1 0 0

5 -2 0

Dot product
kernel & 

each image 
patchInput image

5x6 matrix

Output
3x4 matrix



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

23

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

3 -1 0 0

5 -2 0 0

Dot product
kernel & 

each image 
patchInput image

5x6 matrix

Output
3x4 matrix



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

24

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

3 -1 0 0

5 -2 0 0

3 -1 0 0Dot product
kernel & 

each image 
patch

Each extracted feature looks for 
the same thing in different location

Input image
5x6 matrix

Output
3x4 matrix

“is there 
vertical edge 
in top left?”

“is there 
vertical edge in 
bottom right?”



Convolutions

• Convolution is an operation that takes 
in two matrices:
• Kernel: K x K matrix (e.g., K=3)
• Input: W x H matrix

• Output: (W-K+1) x (H-K+1) matrix
• ij-th element of output is dot product of 

kernel & input[i:i+K,j:j+K]
• (I’m 0-indexing in these slides)

• Convolutional Layer: Kernel is our 
weight/parameter, use convolution to 
extract features

• Note: Convolution is a linear
operation!

25

-1 2 -1

-1 2 -1

-1 2 -1

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

3 -1 0 0

5 -2 0 0

3 -1 0 0

Kernel
(K=3)

Input
(5 x 6)

Output
(5-3+1 x 6-3+1)

=(3 x 4)

(1, 2)-th
element

input[1:4,2:5]



Motivation #1: Local Receptive Fields

• Motivation #1: Each 
neuron should only 
look at a small 
patch of input

• Why? Local 
textures/shapes are 
useful

• First understand 
local patterns, build 
up to global 
understanding

26

Look at tiny patch



Motivation #2: Weight Sharing

• Motivation #2: In each local 
receptive field, the same types of
features are useful
• Basic: Detecting edges

• More advanced: Detecting moose

• So, share the same kernel (i.e.
weights) for all image patches

• Convolutions encode translation 
equivariance
• If your image gets shifted, convolution 

outputs just get shifted too

27

Moose!No mooseNo moose No moose



Convolutional vs. Fully Connected Layers

• Let’s count parameters needed
• Convolutional layer with K=3

• Kernel = 3 x 3 = 9 parameters

• Add a bias term = 10 parameters

• Fully connected layer with 30-dim input, 12-dim 
output needs 
• W: 30 * 12 = 360 parameters

• b: 12 parameters

• Total: 372 parameters

• Fewer parameters = need less data to learn 
useful features

• FC would have to learn to detect the same
feature (e.g., an edge) over and over again at
different locations

28

-1 2 -1

-1 2 -1

-1 2 -1

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

3 -1 0 0

5 -2 0 0

3 -1 0 0

Kernel
(size 9)

Input
(size 30)

Output
(size 12)



Multiple Input Channels

• Input may have multiple input 
channels
• Color image has 3 “channels” for

red/green/blue

• Input is actually 3 x W x H

• Solution: Kernel must be of size 
Cin x K x K

29



Multiple Input Channels

• Input may have multiple input 
channels
• Color image has 3 “channels” for

red/green/blue

• Input is actually 3 x W x H

• Solution: Kernel must be of size 
Cin x K x K

30



Multiple Input Channels

• Input may have multiple input 
channels
• Color image has 3 “channels” for

red/green/blue

• Input is actually 3 x W x H

• Solution: Kernel must be of size 
Cin x K x K

31



Multiple Output Channels

• What if you want more than one 
kernel?
• Can have multiple kernels, each to 

detect a different thing

• One for vertical lines, one for 
horizontal lines, etc.

• So the total size of kernel tensor is
Cout x Cin x K x K

32

-1 2 -1

-1 2 -1

-1 2 -1

Kernel[0,0,:,:]

-1 -1 -1

2 2 2

-1 -1 -1

Kernel[1,0,:,:]



Stride and Padding

• Stride: As you slide across image, 
how big of a step do you take?
• Default: stride=1 pixel

• Can choose larger stride to reduce 
dimensionality

• Padding: Can pad the edges of 
images with 0’s
• For K=3 and no padding, width/height 

shrink by 2 each time

• Adding width-1 padding on each side 
prevents this

• For K=5, pad by 2, etc.

• Default: No padding

33

Moose!No mooseNo moose

Stride

Padding

No moose



Outline

• Extracting features with convolutions

• Convolutional Neural Networks

• Computer vision tasks

34



Convolutional Neural Networks (CNNs)

• How to incorporate convolutions into a full model?

• Basic idea: Use convolutions at beginning, then fully connected
layer at end

35



Convolutional Layers

• First step: Convolutional Layer + ReLU

• Analogous to Linear layer + ReLU
• Convolutional layer is just a special type of

linear layer with local receptive fields & 
weight sharing!

• So we again want to apply a non-linearity
after the linear operation

• ReLU is standard for CNNs

36



Pooling

• Goal: Make receptive field bigger as 
we process the image
• Early: Look for edges (small patch)

• Later: Look for moose (larger patch)

• How do we do this? Pooling!

• Effectively we reduce resolution of 
input by a factor of P (often P=2)
• Average pool: Average in each 2x2 patch

• Max pool: Max in each 2x2 patch

37



More Conv + ReLU + Pool

• Can stack multiple 
Conv + ReLU + pool 
blocks

• Similar to increasing
number of hidden
layers in MLP

• Deeper layers
convolutional layers 
have larger effective 
receptive field 
• Can learn higher-level 

concepts

38



Fully connected layers

• At the very end, we want fully global processing

• Fully connected layers are good at this!

• First flatten from [channels x width x height] to a flat vector

• Then do a MLP (e.g., 2-layer neural network) on top

39



Keeping the dimensions straight

• Suppose convolution kernels are 3x3, 10 output channels, pooling is 2x2, no padding, stride=1
• Each convolution operation loses 3-1=2 in width and height

• In code, also a “batch” dimension because we process all examples in batch together

40

3 x 50 x 70 10 x 48 x 68 10 x 24 x 34 10 x 22 x 32 10 x 11 x 16 1760



Outline

• Extracting features with convolutions

• Convolutional Neural Networks

• Computer vision tasks

41



Image classification

42

• ImageNet dataset: 14M 
images, 1000 labels

• CNNs do very well at 
these tasks!



Progress on ImageNet

43Source: https://www.eff.org/files/AI-progress-metrics.html

• 2012: AlexNet
wins ImageNet 
challenge, 
marks start of 
deep learning 
era (and is a
convolutional
neural network)

• 2016: Machine 
learning 
surpasses 
human 
accuracy

https://www.eff.org/files/AI-progress-metrics.html


Object Detection

• Task: Identify 
objects, provide 
bounding boxes, 
and label them

• One strategy:
Propose
candidate
bounding boxes,
then classify each
box (possibly as 
nothing)

44



Semantic Segmentation

• Task: Predict a class label 
for each pixel

45



Semantic Segmentation

• One strategy: Encoder-Decoder
• First do conv + ReLU + pooling as before

• Then do upsampling + conv + ReLU to generate an output of original size

46



Conclusion

• Convolution: Restricted linear operation 
parameterized by a small kernel

• Convolutional layers extract useful 
features for images
• Motivation #1: Local Receptive Fields

• Motivation #2: Weight Sharing

• Standard CNN architecture
• Start: Convolutional layer + ReLU + Max

Pooling

• End: Fully connected layer

47

-1 2 -1

-1 2 -1

-1 2 -1

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

3 -1 0 0

5 -2 0 0

3 -1 0 0

Kernel
(K=3)

Input

Output


