Deep Learning for Images:
Convolutional Neural
Networks

Robin Jia

USC C5CI 467, Spring 2023
February 23, 2023

Review: Neural networks as feature learners

Classifier 2: Classifier 4:

9 Where to go?
Is left clear” R : 9 . Outputy

Turn left

C/aSsifie ra.

\%} 0

Learn a classifier whose output is a good feature Learn to classify based on features

We don't tell the model what classifier to learn (same as linear model)
Model must learn that “is front clear” is a useful concept

Input x

A hierarchy of features

e Turn left?

A hierarchy of features

e Turn left?

* Front is clear?

A hierarchy of features

e Turn left?
* Front is clear?
* Is object a moose?

A hierarchy of features

e Turn left?

* Front is clear?

* |s object a moose?
* Is this a head?

A hierarchy of features

e Turn left?

* Front is clear?

* |s object a moose?
* |s this a head?

e |s this an antler?

A hierarchy of features

e Turn left?

* Front is clear?

* |s object a moose?
* |s this a head?

* |s this an antler?

e |Is this a line?

Learning features hierarchically

» Today: Process images by
learning features hierarchically

 Start with most basic features on
smallest patches (e.g., a line)

« Based on those, identify more
complex features (e.g., a moose)

Outline

 Extracting features with convolutions
» Convolutional Neural Networks
« Computer vision tasks

10

A moose detector

« Suppose you have a
classifier that can tell if
a region has a moose

* How to use it to create a
useful feature vector?

» Slide it over each region
and check if there’s a
moose there!

11

A moose detector

« Suppose you have a
classifier that can tell if
a region has a moose

* How to use it to create a
useful feature vector?

» Slide it over each region
and check if there’s a
moose there!

12

A moose detector

« Suppose you have a
classifier that can tell if
a region has a moose

* How to use it to create a
useful feature vector?

» Slide it over each region
and check if there’s a
moose there!

13

A moose detector

« Suppose you have a
classifier that can tell if
a region has a moose

* How to use it to create a
useful feature vector?

» Slide it over each region
and check if there's a
moose there!

» We just did a convolution!

Learned
features

o - 00

Moose in far left?
Moose in center left?
Moose in center right?
Moose in far right?

14

An edge detector

Let’s start a little less ambitiously...can we detect a vertical line?
K 0|0(0|0|0]0O

112 (-1 0]11010,0/0 Convolve
112 [(O e I O >

]] ol1lolololo Dot product

(Convolutional) T 50100l 0 kernel & Output

Kernel eachimage 3x4 matrix

3x3 matrix Input image patch

5x6 matrix

An edge detector

Let’s start a little less ambitiously...can we detect a vertical line?

K 0|0(0|0|0]0O 3]
0(1{0|0(0(0

112 (-1 Convolve
112 [(O e I O >

]] ol1lolololo Dot product

(Convolutional) T 50100l 0 kernel & Output

Kernel eachimage 3x4 matrix

3x3 matrix Input image patch

5x6 matrix

An edge detector

Let’s start a little less ambitiously...can we detect a vertical line?
o~ 0/0[{0|0|0]|0 1E
112 (-1 0]11010/0/0 Convolve
112 [(O I I I B >
]] ol1lolololo Dot product
(Convolutional) T 50100l 0 kernel & Output
Kernel eachimage 3x4 matrix
3x3 matrix Input image patch

5x6 matrix

An edge detector

Let’s start a little less ambitiously...can we detect a vertical line?
o~ 0|{0[0|0|0]0 3T To
112 (-1 0]11010/0/0 Convolve
112 [O[T T|T|1T]1 >
]] ol1lolololo Dot product
(Convolutional) T 50100l 0 kernel & Output
Kernel eachimage 3x4 matrix
3x3 matrix Input image patch

5x6 matrix

An edge detector

Let’s start a little less ambitiously...can we detect a vertical line?
112 (-1 0100000 3(-1({01]0

112 (-1 0]11010,0/0 Convolve
112 [(O e I O >

]] ol1lolololo Dot product

(Convolutional) T 50100l 0 kernel & Output

Kernel eachimage 3x4 matrix

3x3 matrix Input image patch

5x6 matrix

An edge detector

Let’s start a little less ambitiously...can we detect a vertical line?
112 (-1 0 0/0/0/0/0 3(-1({010

112 (-1 0]11010,0/0 Convolve 5
112 [(O 10 e I O O >

]] ol1lolololo Dot product

(Convolutional) 575510 010 kernel & Output

Kernel eachimage 3x4 matrix

3x3 matrix Input image patch

5x6 matrix

An edge detector

Let’s start a little less ambitiously...can we detect a vertical line?
112 (-1 0/0/0/0/0/0 3(-1({010

112 (-1 0]11010/0/0 Convolve 5 |-2
112 [(O I I I B >

_] ol1lolololo Dot product

(Convolutional) 5570 010 kernel & Output

Kernel eachimage 3x4 matrix

3x3 matrix Input image patch

5x6 matrix

An edge detector

Let’s start a little less ambitiously...can we detect a vertical line?
112 (-1 0/10/0/0/0/0 3(-1({010

112 -1 07110101910 Convolve 51-2|0
112 [O[T T|T|1T]1 >

_] ol1lolololo Dot product

(Convolutional) | T5 570 010 kernel & Output

Kernel eachimage 3x4 matrix

3x3 matrix Input image patch

5x6 matrix

An edge detector

Let’s start a little less ambitiously...can we detect a vertical line?
112 (-1 010/0/0/0/0 3(-1({010
112 (-1 0F1101019 0 Convolve 5/-2/0|0
112 [(O e I O >
]] ol1lolololo Dot product
(Convolutional) T 5010010 kernel & Output
Kernel eachimage 3x4 matrix
3x3 matrix Input image patch

5x6 matrix

An edge detector

Let’s start a little less ambitiously...can we detect a vertical line?
112 (-1 0,0/0/0/010 3T U ver’itisctar}eerg e
0/1/0/0|0|0 .)
112 (-1 SEIERERERE Convolve 5(-2| 0| 0| intopleft?
112 ol1lolololo Dot product 3|10 0‘\,,is here
(Convolutional) olololololo kerr,]el & OUtPUt_ vertical edge in
Kernel each image 3x4 matrix bottom right?”
3x3 matrix Input image patch
9X6 matrix

Each extracted feature looks for
the same thing in different location

Convolutions

T 1 0/0/0/0/0]0 - Convolution is an operation that takes
112 |-1 0l1/0|0]|0]0O In two matrices:
1121 SERERERERE * Kernel: Kx K matrix (e.g., K=3)
ol1lolololo * |nput: W x H matrix
Kernel 1o m » Output: (W-K+1) x (H-K+1) matrix
(K=3) * ij-th element of output is dot product of
Input kernel & inputli:i+K,j:j+K]
(5 x 6) * (I'm O-indexing in these slides)
311100 , Convolutional Layer: Kernel is our
5|2|0 L0< input([1:4,2:5] weight/parameter, use convolution to
31100l 0 extract features
Output \ (1, 2)-th * Note: Convolution is a linear

(5-3+1 x 6-3+1) element operation!

=(3 x 4)

25

Motivation #1: Local Receptive Fields

» Motivation #1: Each
neuron should only
look at a small
patch of input

* Why? Local
textures/shapes are
useful

* First understand
local patterns, build
up to global
understanding

26

Motivation #2: Weight Sharing

* Motivation #2: In each local
receptive field, the same types of
features are useful

 Basic: Detecting edges
» More advanced: Detecting moose

« So, share the same kernel (i.e.
weights) for all image patches

e Convolutions encode translation
equivariance

« If your image gets shifted, convolution
outputs just get shifted too

27

Convolutional vs. Fully Connected Layers

112 (-1
112 (-1
112 (-1

 Let's count parameters needed

» Convolutional layer with K=3
« Kernel =3 x 3 = 9 parameters
« Add a bias term = 10 parameters

 Fully connected layer with 30-dim input, 12-dim
output needs

« W:30*12 =360 parameters
Inp'—“: * b: 12 parameters
(size 30) - Total: 372 parameters

3(-1/010 » Fewer parameters = need less data to learn
5192 0l 0 useful features

3100 FC would have to learn to detect the same
feature (e.g., an edge) over and over again at
Output different locations

(size 12)

oO|l=10]|0
oO|l=10]|0

Kernel
(size 9)

Ol O0|0O0|0O

Ol |lm Ao

O|lo0o|—=10|0O
O|lo0o|—=|10|0O

00

Multiple Input Channels

* Input may have multiple input
channels

« Color image has 3 “channels” for
red/green/blue

* Input is actually 3 x W x H

e Solution: Kernel must be of size
Ci, xKx K

Fed Channel

Green Channel

Blue Channel

29

Multiple Input Channels

* Input may have multiple input
channels

 Colorimage has 3 “channels” for
red/green/blue

* Input is actually 3 x W x H

e Solution: Kernel must be of size
Ci, xKx K

Fed Channel

Green Channel

Blue Channel

30

Multiple Input Channels

* Input may have multiple input
channels

« Color image has 3 “channels” for
red/green/blue

* Input is actually 3 x W x H

e Solution: Kernel must be of size
Ci, xKx K

Fed Channel

A

N

]

Green Channel

Blue Channel

31

Multiple Output Channels

» What if you want more than one 121

kernel? 112 |-

« Can have multiple kernels, each to 112
detect a different thing Kernel[0,0.:.]

* One for vertical lines, one for

horizontal lines, etc. -T{-1]-1

* So the total size of kernel tensor is 2122

Cout XCinXKXK -11(-11-1

Kernel[1,0,;]

Stride and Padding

« Stride: As you slide across image,
how big of a step do you take?
« Default: stride=1 pixel

» Can choose larger stride to reduce
dimensionality

« Padding: Can pad the edges of
images with 0’s
» For K=3 and no padding, width/height
shrink by 2 each time

« Adding width-1 padding on each side
prevents this

« For K=5, pad by 2, etc.

« Default: No padding Padding

33

Outline

* Convolutional Neural Networks

34

Convolutional Neural Networks (CNNs)

— CAR
— TRUCK

— VAN

A =
——
—— ____ n -
ol - ___ _' P =r =]) :
' N 40
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING CLATTEN FULLY o orTMAx
) CONNECTED

« How to incorporate convolutions into a full model?

» Basic idea: Use convolutions at beginning, then fully connected
layer at end

Y]

JENEEEEEE

JEEEEEEEE

[]
|
()
O
-
0
—
m

35

Convolutional Layers

P

INPUT CONVOLUTION + Ry

» First step: Convolutional Layer + RelLU

» Analogous to Linear layer + ReLU

» Convolutional layer is just a special type of
linear layer with local receptive fields &
weight sharing!

« So we again want to apply a non-linearity
after the linear operation

* ReLU is standard for CNNs

36

INPUT

CDNVOLUTIDKELU POOLING

» Goal: Make receptive field bigger as
we process the image
« Early: Look for edges (small patch)
« Later: Look for moose (larger patch)

« How do we do this? Pooling!

» Effectively we reduce resolution of
input by a factor of P (often P=2)
« Average pool: Average in each 2x2 patch
« Max pool: Max in each 2x2 patch

37

More Conv + ReLU + Pool

INPUT
g \

CONVOLUTION + RELU

POOLING

@\IVDLUTION + RELU Poouw

 Can stack multiple
Conv + RelLU + pool

bloc
e Simi
num

KS
ar to increasing

ner of hidden

ayers in MLP

* Deeper layers
convolutional layers
nave larger effective

receptive field

 Can learn higher-level
concepts

38

Fully connected layers

4 < .. — CAR \
K

L,_J_fi1:;:;{-_‘{;?._;:_--_;;5__,5_ — TRUC
'“---Ii‘:-’-‘é‘ Ny / — VAN
— ri
N _,-"
— : Sy

e g . :
' < 1L [] — BICYCLE
FULLY
| INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN connECTED SOFTMAX

At the very end, we want fully global processing

Fully connected layers are good at this!

First flatten from [channels x width x height] to a flat vector
Then do a MLP (e.g., 2-layer neural network) on top

LI T T T T
u /
LI TITTTTIT]
SHEEEEEEEN

39

Keeping the dimensions straight

v [] —CAR
S NN | — TRUCK
[\ \\ u] — VAN
£\ [] — BICYCLE
| INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN corZLnﬁE:YTED SOFTMAX
3x50x70 10x48x68 10x24x34 10x22x32 10x11x16 1760

« Suppose convolution kernels are 3x3, 10 output channels, pooling is 2x2, no padding, stride=1
« Each convolution operation loses 3-1=2 in width and height

* In code, also a “batch” dimension because we process all examples in batch together

40

Outline

« Computer vision tasks

41

Image classification

* ImageNet dataset: 14M
images, 1000 labels

e = * CNNs do very well at

mii:e container shi

mite container ship motor scooter leopard

black widow lifeboat go-kart jaguar th ese tas kS |
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

grl e musnroom cnerry Madagascar cat
vertible agaric dalmatian sq | monkey
grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagoni gill fungus |ffordshire bullterrier indri
fire engine | dead-man’'s-fingers currant howler monkey

Dense (1000)

F 3

Progress on ImageNet

F 3

Dense (4096)

Imagenet Image Recognition
e+ 2012: AlexNet *
wins ImageNet

Cha”enge, 3x3 Conv (384), pad 1
marks start of f
deep Iearning 3x3Conv(;84), pad 1
era (and is a

3x3 Conv (384), pad 1

convolutional
neural network) *
e« 2016: Machine

5x5 Conv (256), pad 2

E-ResNet152 / WMW I e a r‘n i n g
2011 2012 2013 2014 2015 2016 2017 Su rpasses
human

accura Cy 11x11 Conv‘E96), stride 4

0.20

Error rate
o
o

o
-
o

Image (3x224x224)

Source: https://www.eff.org/files/Al-progress-metrics.html 43

https://www.eff.org/files/AI-progress-metrics.html

Object Detection

1

= -
e L i

~ objects, provide
~ bounding boxes,
and label them

<« * One strategy:
- Propose
- candidate

. bounding boxes,
then classify each
box (possibly as
nothing)

- < Task: Identify

44

Semantic Segmentation

* Task: Predict a class label
for each pixel

Road Sidewalk Building - Fence
B Pole I Vegetation B Vehicle B Uniabel

Semantic Segmentation

Convolutional Encoder-Decoder Output

Pooling Indices
RGB Image B conv + Batch Normalisation + RelU Segmentation
B Pooling I Upsampling Softmax

* One strategy: Encoder-Decoder
* First do conv + ReLU + pooling as before
« Then do upsampling + conv + ReLU to generate an output of original size

Conclusion

 Convolution: Restricted linear operation
parameterized by a small kernel

» Convolutional layers extract useful
features for images (K=3)
« Motivation #1: Local Receptive Fields
« Motivation #2: Weight Sharing

O|lo0(O0O|O|O

O|l=_|l=mlaloO

O|l=(0]0
O|l=(0]0

O[O0]|0

|00 |O0O

« Standard CNN architecture 3|-1/0]0
» Start: Convolutional layer + ReLU + Max °|2]0]0
Pooling 3(-1/0]0

» End: Fully connected layer Output

Input

