
Introduction to
Neural Networks

Robin Jia
USC CSCI 467, Spring 2023

February 16, 2023



Today’s Plan

• Neural networks: What and why?

• Training
• Stochastic gradient descent

• Random initialization

• (Next class: How to compute gradients?)

• Regularization
• Early stopping

• Dropout

2



A (toy) self-driving car example

• Three-way classification problem: 
Go left, straight, or right?

• What features are important here?
• Is front clear?

• Is left clear?

• Is right clear?

3

Action 1: 
Turn left

Action 2: 
Go straight

Action 3: 
Turn right



A (toy) self-driving car example

• Suppose we had these features:
• z = [z1, z2, z3]
• z1 = 1 if front is clear, 0 else
• z2 = 1 if left is clear, 0 else
• z3 = 1 if right is clear, 0 else

• With this, we can do softmax regression:
• Score for “straight”: 20 z1 – 10
• Score for “left”: 10 z2 – 10
• Score for “right”: 10z3 – 10

• Behavior
• If everything is clear, go straight
• If front is blocked, go left or right if those are 

clear
• If everything is blocked, all equally bad

4

Action 1: 
Turn left

Action 2: 
Go straight

Action 3: 
Turn right



A (toy) self-driving car example

• How can we write the feature “is front 
clear”?

• Checking if the front is clear is itself a
machine learning problem
• Input = camera image/lidar data, 

Output = whether there is an obstacle

• Obstacle near or far away?

• Hard obstacle or a plastic bag?

• Can we make our features the outputs
of another “classifier”?

5

Action 1: 
Turn left

Action 2: 
Go straight

Action 3: 
Turn right



Feature learning

6

Input x

Classifier 2: 
Is left clear?

0

1

0

Classifier 4: 
Where to go?

Output y
Turn left 

This is a neural network!



Any linear classifier

(linear regression, 
logistic regression, 

softmax regression) 

A two-layer neural network

• Hidden layer: A bunch of 
logistic regression 
classifiers
• Parameters: wj and bj

for each classifier
• Produces “activations” =

learned feature vector

• Final layer: A linear
classifier
• E.g. if logistic

regression, has 
parameter vector v and 
bias c

7

Input x
(vector of 
length d) Hidden layer 

“activations” z
(vector of length h)

Hidden layer Final layer

Output y

.9

.2

.8



Any linear classifier

(linear regression, 
logistic regression, 

softmax regression) 

A two-layer neural network (matrix form)

• Hidden layer: A bunch of 
logistic regression 
classifiers
• Parameters: wj and bj for

each classifier
• Equivalently: matrix W (h x 

d) and vector b (length h)

• Produces “activations” =
learned feature vector

• Final layer: A linear
classifier
• E.g. if logistic regression, 

has parameter vector v and 
bias c

• Parameters of model are
θ = (W, b, v, c)

8

Input x
(vector of 
length d) Hidden layer 

“activations” z
(vector of length h)

Hidden layer Final layer

Output y

Element-wise sigmoid

Overall output 
(logistic last layer)



Neural networks as feature learners

9

Input x

Classifier 2: 
Is left clear?

0

1

0

Classifier 4: 
Where to go?

Output y
Turn left 

Learn to classify based on features 
(same as linear model)

Learn a classifier whose output is a good feature
We don’t tell the model what classifier to learn

Model must learn that “is front clear” is a useful concept 



Do we need “non-linearities”?

• Suppose we deleted the sigmoids…

• Result: Just another way to write a linear 
function!
• New “weight” is vTW

• New “bias” is vTb + c

• To learn a non-linear function, need a
“nonlinearity” between the two layers

10

With sigmoid, overall output 
(with logistic last layer) is:

Without sigmoid, overall output 
(with logistic last layer)is:



Options for non-linearities

• Many options work, just must be differentiable

• In practice: tanh and ReLU often preferred
• Tanh: Better than sigmoid because outputs centered around zero
• ReLU: Very fast to compute

11

Tanh ReLUSigmoid



Solving XOR

• What functions can we represent with 
neural networks?

• XOR: Classic binary classification problem 
that can’t be solved by linear classifier

• A 2-layer neural network can solve it!

12

x1

x2

1

1

x1

x2

≈1 if both are 0, ≈0 else 

≈1 if both are 1, ≈0 else 

z1

z2

< 0 if XOR(x1, x2) = 0

> 0 if XOR(x1, x2) = 1



Universal Approximation

• Fact: Any function can be approximated by a 2-
layer neural network with enough hidden units

• 2-layer neural networks are thus “universal
approximators”
• Note: Also true for k-NN, SVM with RBF kernel…

• Proof sketch
• First layer learns a bunch of step functions, which 

divide the domain into “buckets”

• Second layer assigns correct value to each bucket

• With enough hidden units, width of buckets can 
become arbitrarily small

13



Multi-Layer Perceptrons

• What we saw so far is called a “2-layer perceptron”

• But we can add more layers!
• Corresponds to more complex feature extractor 

• In practice, making networks “deeper” (more layers) often helps more than making them 
“wider” (more hidden units in each layer)

• Layers are “fully connected” as each neuron depends on every neuron in previous layer
14

Final layer

Input x

First hidden
layer z(1)

Output y

Second hidden
layer z(2)

Third hidden
layer z(3)

4-layer MLP



Announcements

• HW1 grades out, solutions discussed in tomorrow’s section

• Project proposals due today at 11:59pm

• HW2
• Problems 1-3 released soon
• Problem 4 (neural network coding problem) released a bit later
• Due Thursday, March 2

• Reminders about plagiarism
• Looking at another student’s solutions or sharing your solutions is strictly 

prohibited
• This includes posting your code publicly on GitHub

• While you may talk to classmates at a high level, your entire write-up and code
must be written by yourself

15



Today’s Plan

• Neural networks: What and why?

• Training
• Stochastic gradient descent

• Random initialization

• (Next class: How to compute gradients?)

• Regularization
• Early stopping

• Dropout

16



Training objectives

Logistic Regression

• Model’s output is

• (Unregularized) loss function is

Binary Classification w/ Neural Networks

• Model’s output is

• Loss function is same, in terms of g!

17

More generally, write as
Also applies for 
linear regression,
softmax regression, etc.



Stochastic gradient descent

Gradient Descent

• Disadvantage: 1 update is O(n) time
• What if dataset is very large?

• Idea: Approximate with sample mean

Stochastic Gradient Descent

1. Sample a batch B of examples 
from the training dataset

2. Do the update

18

General loss function: 
Model’s output, depends on 
parameters θ

Average of per-example gradients

Sample mean within batch



Stochastic gradient descent

In practice, a slightly different version is used to ensure equal usage of all training 
examples:

for t = 1, …, T:

Randomly partition training examples into batches B1, …, Bk
for i = 1, …, k:

How many batches? Desired “batch size” (# examples/batch) is another 
hyperparameter to tune

• Larger batch size = more accurate gradient, but slower
• Smaller batch size = faster, but may wander in suboptimal directions

• Again, can be used with any model, but especially common with neural networks

19

Update based on sample mean 
within current batch

Each t (i.e., each pass over the dataset) is called one “epoch”



Stochastic gradient descent

• SGD: Each parameter 
update is only 
“approximately” going 
towards the minimum

• But given enough time,
you’ll end up in (almost)
the same place
• Plus each step is much 

faster!

20



OK, so how do we compute the gradient?

• Neural networks can get very 
big & complicated…

• Taking gradients by hand is
tedious…

• Can we write a program to take
gradients for us?

• Yes! Backpropagation (focus of 
next class)

21

How to compute
this gradient?



Initialization

• For convex problems (e.g. logistic 
regression), initialization doesn’t 
matter much for final result
• We just initialize parameters to all 0’s

• For neural networks, initialization 
matters a lot!
• Optimization problem is non-convex

• Where you start determines what 
parameters you learn

22

Local minimum
Gradient descent can get 

stuck here!



The problem with all-0’s initialization

• What if we initialize 
with all 0’s?

• Problem: Symmetry
• All hidden units start 

out the same, so 
gradients will be the 
same for each

• Thus, all hidden units 
will stay the same!

• We must initialize in 
a way that breaks the 
symmetry

23

Any linear classifier

(linear regression, 
logistic regression, 

softmax regression) Input x

Hidden layer 
“activations” z

Output y

.5

.5

.5

If every wj starts as 0 vector,
gradient update to each wj will be the same



How to initialize neural networks

• TL;DR: Initialize every entry in W to a small 
random number

• How small? Many options…
• Depends on “fan-in” nin (# input features) and

“fan-out” nout (# output features)

• Xavier initialization:

• He initialization: 

• Pytorch: 

24

Intuition: If many dimensions, each 
individual weight can be smaller 
because dot product will sum 
many small numbers together

Uniform avoids large outliers

nout

nin

W

w1

wnout



Today’s Plan

• Neural networks: What and why?

• Training
• Stochastic gradient descent

• Random initialization

• (Next class: How to compute gradients?)

• Regularization
• Early stopping

• Dropout

25



Regularization & Neural Networks

• Recall: Neural networks are universal 
approximators

• This means they are prone to
overfitting!

• How to avoid overfitting too badly?

26



Weight decay (AKA L2 Regularization)

• L2 regularization is a valid strategy!

• Often called “weight decay” when used with neural networks
• Because every gradient step, you add the update

27

Weights literally “decay” by factor of (1 – ηλ)



Early stopping

• Idea: Prevent overfitting by stopping 
training before you overfit too much

• How it works
• Every so often during training, save 

“checkpoint” of model parameters and evaluate 
development loss

• Remember which checkpoint had best 
development loss

• If development loss keeps going up, stop
training

• Can be used for any model, but especially 
common for neural networks
• For linear models, also common to train all the 

way to convergence

28



Dropout

• Idea: During training you randomly 
“drop out” some neurons by setting 
their value to 0
• Drop each out with probability p

• To compensate, scale the other
neurons up by 1/p

• During testing, don’t do dropout

• Why?
• Standard intuition is about “co-

adaptation” of neurons

• My personal intuition: Making the 
problem harder during training is good 
practice

29



Conclusion

• Neural networks let us learn useful features & approximate any function

• Use multiple layers, with non-linearity between each layer

• Train with stochastic gradient descent, need random initialization to break symmetry

• Regularization is important (especially early stopping)

30

Input x

Classifier 2: 
Is left clear?

0

1

0

Classifier 4: 
Where to go?

Output y
Turn left 


