Introduction to
Neural Networks
Robin Jia

USC C5CI 467, Spring 2023
February 16, 2023

Today’s Plan

* Neural networks: What and why?

* Training
 Stochastic gradient descent
« Random initialization
 (Next class: How to compute gradients?)

 Regularization
« Early stopping
* Dropout

A (toy) self-driving car example

Action 2: » Three-way classification problem:
Go straight Go left, straight, or right?

Action 1: ‘ Action3: « What features are important here?

Turn left Turn right
\ % / g . |s front clear?

- * |s left clear?
™ -

* Is right clear?

A (toy) self-driving car example

« Suppose we had these features:

Action 2:
Go straight * 2=z,2, 24
« z, = 1if frontis clear, 0 else
Action 1: ‘ Action 3: : 42) 1 I: I.efLIS. Clelar, Ooelsle
Turn left \ / Turn right Zg = 11rrightis clear, U else
% « With this, we can do softmax regression:
.y g % Score for “straight”: 20 z, - 10
| - Score for “left”: 10 z, — 10
H l.‘ « Score for “right”: 10z; — 10
e Behavior

« If everything is clear, go straight

« If front is blocked, go left or right if those are
clear

« If everything is blocked, all equally bad

A (toy) self-driving car example

Action 2: « How can we write the feature “is front
Go straight clear”?
Action 1: ‘ Action3: » Checking if the front is clear is itself a

Tum'eft\ %ﬁ / Turn right machine learning problem

* Input = camera image/lidar data,
Output = whether there is an obstacle

* Obstacle near or far away?
« Hard obstacle or a plastic bag?

» Can we make our features the outputs
of another “classifier”?

Feature learning

Classifier 2: Classifier 4:

9 Where to go?
Is left clear” : 9 . Outputy

Turn left

|

This is a neural network!

A two-layer neural network

g O [o + Hidden layer: A bunch of
\(\m& logistic regression
O~), |2 . ” classifiers
W Any linear classifier Parameters: w; and b,
G [}
. —> Outputy for each classifier
(linear regression, Produces “activations”
o 20/;7:’2“ logistic regression, learned feature vector
Inputx %) softmax regression) * Final layer: A linear
(vector of .8 classifier
length d) Hidden layer) rEegrel,-fsls%glr?tlquas
“activations” z arameter vector v and
(vector of length h) ias ¢
\ A l
| |

Hidden layer Final layer

A two-layer neural network (matrix form)

Element-wise sigmoid
_ ° « Hidden layer: A bunch of
o(v) =lo(v),o(va), -, o (vn)] logistic regression

l , . classifiers
o(Wx+0b) Any linear classifier » Parameters: w; and b; for
> » Outputy each classifier

i i Equivalently: matrix W g‘l X
sSion
l(“n.e,?.r regres . d) and vector b (length h)
ogistic regress[on, Produces “activations” =
Input x softmax regression) learned feature vector

(vector of « Final layer: A linear

length : Overall output classifier
ength d) ,,Hld,den, Iay?r (logistic last layer) - E.g. if logistic regression,
activations z

has parameter vector v and
(vector of length h)

v'o(Wz +b)+c bias ¢

\ J\] - Parameters of model are
Y 9 = (Wl bl Vl C)

Hidden layer Final layer

Neural networks as feature learners

e\

. \e(~ N

(;\655\ \ea‘q- 0
o~

\S

Classifier 2: Classifier 4:

9 Where to go?
Is left clear” R : 9 . Outputy

Turn left

C/aSsifie ra.

\%} 0

Learn a classifier whose output is a good feature Learn to classify based on features

We don't tell the model what classifier to learn (same as linear model)
Model must learn that “is front clear” is a useful concept

Input x

Do we need “non-linearities”?

With sigmoid, overall output
(with logistic last layer) is:

vie(Wz+b)+c

Without sigmoid, overall output
(with logistic last layer)is:

v (Wax+Db) +c
= (TW)x+ (v'b+c)

» Suppose we deleted the sigmoids...

 Result: Just another way to write a linear
function!
* New “weight” is vIW
* New “bias”isv’b +c

* To learn a non-linear function, need a
“nonlinearity” between the two layers

10

Options for non-linearities

Sigmoid Tanh RelLU
o(z) = 1 +1€_Z tanh(z) = Z; 4__ 1 ReLLU(Jz) = m.!ax(lrz, O)h

« Many options work, just must be differentiable

* In practice: tanh and ReLU often preferred
« Tanh: Better than sigmoid because outputs centered around zero
* RelLU: Very fast to compute

Solving XOR

X2
» What functions can we represent with
1 + — neural networks?

« XOR: Classic binary classification problem
that can't be solved by linear classifier

- +_’ X A 2-layer neural network can solve it!
1

o(100 - (—z1 — 22 T 05

z,|=1if bothare 0,=0else 05—z —2 <0if XOR(X;, X,) =0
>
>0 if XOR(x, X5) =1

Xa| (100 (2 4, = » Z,| =1 if both are 1, =0 else

5)

12

Universal Approximation

 Fact: Any function can be approximated by a 2- |
layer neural network with enough hidden units /’\Tﬁ L
» 2-layer neural networks are thus “universal "N_\ /;_ o
approximators” o
- Note: Also true for k-NN, SVM with RBF kernel... i
 Proof sketch t
* First layer learns a bunch of step functions, which by 2
divide the domain into “buckets” M xm "
« Second layer assigns correct value to each bucket \J BU X
 With enough hidden units, width of buckets can
become arbitrarily small iy Qﬁ% Y

13

Multi-Layer Perceptrons

o(WWz 4+ oW 4 @) [(W22 4 b)) Final layer
> > > » Qutputy
Input x 4-layer MLP
First hidden Second hidden Third hidden
layer z() layer z®@ layer z®)

« What we saw so far is called a “2-layer perceptron”

» But we can add more layers!
« Corresponds to more complex feature extractor

* In practice, making networks “deeper” (more layers) often helps more than making them
“wider” (more hidden units in each layer)

 Layers are “fully connected” as each neuron depends on every neuron in previous layer .

Announcements

« HW1 grades out, solutions discussed in tomorrow’s section
* Project proposals due today at 11:59pm

« HW2

* Problems 1-3 released soon
« Problem 4 (neural network coding problem) released a bit later
* Due Thursday, March 2

Reminders about plagiarism
 Looking at another student’s solutions or sharing your solutions is strictly
prohibited
 This includes posting your code publicly on GitHub

« While you may talk to classmates at a high level, your entire write-up and code
must be written by yourself

Today’s Plan

* Training
 Stochastic gradient descent
« Random initialization
 (Next class: How to compute gradients?)

16

Training objectives

Logistic Regression
* Model’s output is
g@x)=w'z+b

* (Unregularized) loss function is
1 — . .
1IN (@) . ()

- ;:1 loga(y g(x))

More generally, write as

Binary Classification w/ Neural Networks
* Model's output is

g(x)=v'o(Wz+b)+c

 Loss function is same, in terms of g!

1 - 7 ()
LY togo (59 - g(e)
1=1

n

1

1=1

Also applies for

~Se (y(i)’g(gj(i))) . where £(y,u) = —logo(y -w) linear regression,
n

softmax regression, etc.

17

Stochastic gradient descent

1 — _ |
ian: L () ()
General loss function: - %" ¢ (y gl))

=1 "~ Model's output, depends on
parameters 6
Gradient Descent Stochastic Gradient Descent
00— 1 S Vol (y(i)’g(x(i)) 1. Sample a bqtqh B of examples
|\ = } from the training dataset
! . 2. Do the update
Average of per-example gradients
- Disadvantage: 1 update is O(n) time bt "\ (%;B Vot y. g(@ }
« What if dataset is very large? Y

* |dea: Approximate with sample mean Sample mean within batch

18

Stochastic gradient descent

In practice, a slightly different version is used to ensure equal usage of all training
examples:

for t = 1, .., T: Eacht(i.e, each pass over the dataset) is called one “epoch”
Randomly partition training examples into batches B;, .., B,

for i =1, .., k'
0+ 0—n- Z Vol (y, g(z Update based on sample mean

(:c y)EB; within current batch

How many batches? Desired “batch size” (# examples/batch) is another
hyperparameter to tune

 Larger batch size = more accurate gradient, but slower

« Smaller batch size = faster, but may wander in suboptimal directions

 Again, can be used with any model, but especially common with neural networks

19

Stochastic gradient descent

» SGD: Each parameter

Stochastic Gradient Upd ate is onIy
“approximately” going
towards the minimum

 But given enough time,
you'll end up in (almost)
the same place

 Plus each step is much
faster!

20

OK, so how do we compute the gradient?

* Neural networks can get very
de0-1n Z Vol (y,9(2)) | big & complicated...

 Taking gradients by hand is
How to compute)
this gradient? tedious...

« Can we write a program to take
gradients for us?

* Yes! Backpropagation (focus of
next class)

21

Initialization

N it o,
\" “\\‘\;\\\ ”"
‘%“\“ S \\“@’

Local minimum
Gradient descent can get
stuck here!

* For convex problems (e.g. logistic
regression), initialization doesn't
matter much for final result

« We just initialize parameters to all 0’s

* For neural networks, initialization
matters a lot!
» Optimization problem is non-convex

* Where you start determines what
parameters you learn

22

The problem with all-0’s initialization

S0 [5 » What if we initialize
with all 0's?
2 Any linear classifier - Problem: Symmetry
» Outputy . .
(linear regression, » All hidden units start
logistic regression, Oga;[éitreer]’cssavrci?l' Sg the
Input x softmax regression) game tor each
5 . :
, « Thus, all hidden units
Hidden layer will stay the same!
“activations” z o
* We must initialize in
If every w; starts as 0 vector, a way that breaks the

gradient update to each w; will be the same symmetry

23

How to initialize neural networks

* TL;DR: Initialize every entry in W to a small Wy
random number n
) out W
« How small? Many options...
 Depends on “fan-in" n,, (# input features) and = Whout —
“fan-out” n_, (# output features) n,
« Xavier initialization: Normal (0, -) Intuition: If many dimensions, each
Nin T Mout / individual weight can be smaller
e e . 2 because dot product will sum

1 1

v Nin ’ AV Nin

« Pytorch: Uniform (—) Uniform avoids large outliers

24

Today’s Plan

 Regularization
« Early stopping
* Dropout

25

Regularization & Neural Networks

vy
o,

X hy 2
(]

N " {S_E:))(hz ﬁ f“'\,.g'x Py

L W ee S

|"-'_H‘|] ¥ [¥
L eoeconol LN U

e Recall: Neural networks are universal
approximators

* This means they are prone to
overfitting!

» How to avoid overfitting too badly?

26

Weight decay (AKA L2 Regularization)

|2 regularization is a valid strategy!

 Often called “weight decay” when used with neural networks
» Because every gradient step, you add the update

0 «— 6 — 7 - A0 Weights literally “decay” by factor of (1 — nA)

27

Early stopping

Error

* |ldea: Prevent overfitting by stopping
training before you overfit too much

| « How it works

\ Every so often during training, save
“checkpoint” of model parameters and evaluate
development loss

 Remember which checkpoint had best
development loss

I i — - If development loss keeps going up, stop
Number of epochs tl’a NN g

 Can be used for any model, but especially
common for neural networks

* Forlinear models, also common to train all the
way to convergence

Validation

Stop training

28

(a) Standard Neural Net

(b) After applying dropout.

» |[dea: During training you randomly
“drop out” some neurons by setting
their valueto 0

* Drop each out with probability p

« To compensate, scale the other
neurons up by 1/p

 During testing, don't do dropout
« Why?
 Standard intuition is about “co-
adaptation” of neurons

« My personal intuition: Making the
problem harder during training is good
practice

29

Conclusion

Classifier 2:
Is left clear?

>

Claceir:
Is 2SSifier 3:

%

Input x

~

0

Classifier 4:

?
Where to go~ Output y

J

Turn left

Neural networks let us learn useful features & approximate any function
Use multiple layers, with non-linearity between each layer

Train with stochastic gradient descent, need random initialization to break symmetry
Regularization is important (especially early stopping)

30

