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The story of COMPAS
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The story of COMPAS
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There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

* “The formula was particularly likely to falsely flag black
defendants as future criminals, wrongly labeling them this way at
almost twice the rate as white defendants.”

* “White defendants were mislabeled as low risk more often than
black defendants.”

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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Is COMPAS unfair?

Unfair: Black individuals who did not Fair: For given risk score,

reoffend were more likely to be chance of recidivism same

categorized as high risk for each population
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https://medium.com/soal-food/what-makes-an-algorithm-fair-6ad64d75dd0c
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Outline

* Allocative harms
» Unequal accuracy
* Representational harms




Allocation problems

* Problems in which REUTERS
individuals are evaluated
for receiving certain Amazon scraps secret Al recruiting tool that
opportunities or resources showed bias against women
« Bail or sentencing decisions By Jeffrey Dastin sunreas ¥

* Receiving Ioa.ns . “In effect, Amazon'’s system taught itself that male
* Job resume filtering candidates were preferable. It penalized resumes
(Applicant tracking systems) thatincluded the word “women’s,” as in “women’s
. Automated essay grading chess club cap’tam. And it downgraded graduates of
two all-women’s colleges, according to people

familiar with the matter.”

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias- 6
against-women-idUSKCN1MKO08G
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Basic setup

« X: An individual (or features thereof)

* Y: Something you want to predict
« E.g., Will this person repay a loan or not (1 if yes, 0 if no)

* Note: These are often actual prediction problems, not labeling—lots of
fundamental uncertainty!

* R: Classifier's prediction
* For now, just think of thisas 1 or 0
« But it can also be a continuous output, such as P(y=1 | x; 0)

« A: Sensitive attribute (e.g., gender, race, etc.)
« We ask: Is the model fair to individuals with different values of A?




No fairness through unawareness

e First attempt: Just don't
depend on the sensitive __\ ¢
attribute (“blindness”) i SR

* Problem: Sensitive attribute e m

can often be reconstructed
from other features

« Suppose you want to be fair

gy .r
Greater Los Angeles Racial Map

size - Pacific Islander,

acrOSS raCiaI groupS Amerindian, Inuit, Other .

- Even if you don't use race to N -
predict, zip code has a lot of
information about race

Barocas, Hardt, and Narayanan. Fairness and Machine Learning: Limitations and Opportunities.




No fairness through unawareness

* Thought experiment: Trying to predict
income from genome

« Well, there are cues about your ancestry
In your genome

 For various societal reasons, this may
correlate with income

Barocas, Hardt, and Narayanan. Fairness and Machine Learning: Limitations and Opportunities.




How can we measure (un)fairness?

1. Independence (statistical parity)
2. Separation (equalized odds)
3. Sufficiency (calibration within groups)
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1. Independence

* Independence: R 1 A Prediction R=1 Prediction R=0

 Equivalently for binary predictor:
PR=1|A=a)=P(R=1| A=0b)Va,b
« Very weak: says nothing about Y!

» Can be satisfied by predicting well on group a
and randomly with same base rate on group b

« May also be too strongif Y / A

Barocas, Hardt, and Narayanan. Fairness and Machine Learning: Limitations and Opportunities.

P(R=1|A=@)=2/5
P(R=1|A=@)=2/5
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2. Separation / Equalized odds

* Separation: R . A|Y Prediction R=1 / Prediction R=0 —

« Equivalently for binary predictor: o No/goN M ‘e‘ger;_
P(R=1|A=a,Y=1)=P(R=1|A=bY = 1) © 00%e ®® Y0
P(R=0|A=aY=0)=P(R=0|A=5Y =0) /00 0 O

* In English: Recall on both Y=1's and

Y=0’s are same for both groups legi 1 j i:§ } B B ?jg =1/2
* Recall d.e.flnedf as _ P(R—0|A—@.Y = 0) = d4/d—1
Positives found by classifier P(R=0|A—@.Y —0) = 3/3 —

Total Positives

12
Barocas, Hardt, and Narayanan. Fairness and Machine Learning: Limitations and Opportunities.




Trade-offs between false positives/negatives

« Setting: We.have a continuous classifier output R Prediction R=1 | Prediction R=0
« E.g., Forinputx, R =P(y=1]|x; 6) Legend
 Default classification rule: Predict y=1 if R > 0.5, oNoN{oN M o
y=0 otherwise 00 00 e Y=1
« But you can choose any threshold! @ Y=0
« High threshold (e.g. 0.9): Predict fewer 1's ‘—'——’ ‘—'—’
« Low threshold (e.g. 0.1): Predict fewer 0's
- False positives: Predict 1 but real y=0 False negatives: 2 False positives: 0
- Higher threshold reduces false positives True positive rate: 4/6  False positive rate: 0/4
- Measured by False Positive Rate: (=1 -2/6)
P(R=1|AY =0)
- False negatives: Predict 0 but real y=1 Split the dataset into two halves (Y=1 and Y=0)
- Lower threshold reduces false negatives False positives are errors when Y=0
- Measured by True Positive Rate (same as recall): False negatives are errors when Y=1

P(R=1|AY =1)

13



ROC curves

» Receiver Operating Characteristic
(ROC) curve: One way to average
model performance across all
possible thresholds

* For each threshold, measure true
positive rate & false positive rate

e Plot these on a curve

 Area under ROC curve (AUROC)
summarizes performance
 Perfect classifier: AUROC=1
« Random classifier: AUROC=0.5
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Separation and ROC curves

» Separation: Both groups

should be at same point on — 9
I ©
ROC curve . o
- First constraint is on true < 3
positive rate — 0
« Second constraint is on 1 — false | 3
positive rate k2
. . L

» May require setting separate

thresholds for each group
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Barocas, Hardt, and Narayanan. Fairness and Machine Learning: Limitations and Opportunities.
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3. Sufficiency / Calibration within groups

» Separation: Y L A| R Prediction R=1 —
. . egen
« Equivalently for binary predictor: oNoNoN M 00 \-
P(Y=1|A=a,R=1)=P(Y =1|A=bR=1) © 00 ¢o/0 ®® V-0

PlY=0|A=a,R=0)

PY=0|A=bR=0) © 0o

* In English: Precision on both Y=1's and

Y=0's are same for both groups leg ) 1 j g’g B B ~ 2;2 -
. Preclsm.n.defl;\ed fllsb - PY=0|A=@,R=0)=1/1=
Positives found by classifier P(Y=0|A=@,R=0)=2/2=

Things predicted as positive

16
Barocas, Hardt, and Narayanan. Fairness and Machine Learning: Limitations and Opportunities.




Calibration

. . Calibration Plot
« We can instead consider the

model output R to be the
probability P(y=1 | x; 0)

« With an ideal model, what
should P(Y =1|A=a,R=0.8)
equal?

« |deally should equal 0.8!

e |f this holds for all values of
R, model is called well- .
calibrated 0o 0 0 o5 o5 o
Model’s output P(y=1 | x; 8)

1

1.0 1

0.8

0.4 Overconfident

0.2

Well-calibrated

Fraction of examples where Y
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Sufficiency and Calibration

* If R is continuous valued, Calibration
sufficiency says for each R é 101 cender
value, rate of Y=1 should S g g/ — Female
be same between groups § | == Male /
PY=1|A=a,R=7r)= .GEJO'G_
PlY=1|A=bR=1r)Vr Eo,m
o
* If model is well-calibrated 5 0.2
on each group, then it =
- g . . 0.0
satisfies sufficiency o 3 A : 3 10

Score decile

Barocas, Hardt, and Narayanan. Fairness and Machine Learning: Limitations and Opportunities.
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Great, now we can make things fair...?

* Problem: These definitions of fairness are mutually incompatible in
many natural settings!

« No system (automated or human) can simultaneously be fair in all
these ways!




Independence (1) vs. Sufficiency (3)

* Independence and sufficiency only compatibleif Y L A
 Very strong—usually base rates of Y given A are not the same

P(Y|A=a)=) P(R=r|A=a)P(Y|A=a,R=r)
Base rate of Y r
in population a Independence R | A Sufficiency Y | A | R

S P(R=r|A=bP(Y|A=bR=r)
Base rate of Y
— P(Y ’ A= b) in population b

20
Barocas, Hardt, and Narayanan. Fairness and Machine Learning: Limitations and Opportunities.




Is COMPAS unfair?

Unfair; Black individuals who did not Fair: For given risk score,
reoffend were more likely to be chance of recidivism same
categorized as high risk for each population
_ 0% - Recidivism rates by risk score
ad o o Sufficiency Y | A | R
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Where do we go from here?

 There is a fundamental trade-off between different natural notions
of fairness

« We should not be surprised when a system fails by some fairness
criteria

» Can still try to monitor and improve any given notion of fairness
e Overall assessment of “fairness” will continue to be debatable




Announcements

 Homework 4 released, due Thursday, April 27

« Last section this Friday: EM (k-Means, GMM, HMM), inference
algorithms for HMM

 Last class will be a broad overview of all topics




Outline

» Unequal accuracy
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Unequal accuracy

 Allocation problems: Each example represents one individual

* In other scenarios, individuals are not examples but users who
produce (many) examples

25



The TIMIT dataset (1988)

* Important early benchmark Male Female Total (%)
datase? fOI’ SpeeCh White 402 176 578 (91.7%)
recognition Black 15 11 26 (4.1%)

« 6300 utterances, 5 hours American Indian 2 0 2 (0.3%)

« 630 speakers, 10 sentences Spanish-American 2 0 2 (0.3%)

each Oriental 3 0 3 (0.5%)
Unknown 12 5 17 (2.6%)

« Underrepresentation problem!

 Even today, higher error rate
for black vs. white speakers
for commercial ASR systems

Barocas, Hardt, and Narayanan. Fairness and Machine Learning: Limitations and Opportunities.



Gender Shades

Gender

¢ 201 8 StUdy Classifier
Commercial facial B¥ \icrosoft
recognition systems

much less accurate on
darker-skinned females
than other groups

[
Iilll

https://proceedings.mlr.press/v81/buolamwini18a/buolamwinil8a.pdf

Darker
Male

94.0%

99.3%

88.0%

Darker
Female

79.2%

65.5%

65.3%

Largest
Gap

20.8%

33.8%

34.4%
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Language variation

Language identification

computational
analysis of text data

01 02 03 04 05 06 07 08 09 1.0
Posterior Probability of AA

systems miscategorize P —— S
Tweets in African 5 S o= Tuitert B
American English s 1 -
(AAE) as non-English at 2 37 S
a much higher rate S - -
« May affect users of g - -3
systems *§ - s
« May also affect . § + |8
@)

Blodgett, Green, and O’Connor. “Demographic Dialectal Variation in Social Media: A Case Study of African-American English.” EMNLP 2016.
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Outline

* Representational harms
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Representational harms

* Previously
* Allocative harms: Individuals are examples, they can be treated unfairly
« Unequal accuracy: Individuals have examples, they can be helped or not

helped
« Now: Thinking about broader externalities

» Are some stereotypes reinforced by the outputs of this system?
« Harms become evident on longer time scales




Machine translation and gender

* |In some |anguageS, = Google Translate % = Google Translate Q
nounS mUSt SpeCify ENGLISH g SPANISH ENGLISH Ping SPANISH
gender o o

My friend is a doctor X My friend is a doctor X

* When translating

from gender-neutral ¢ © : ¢ 0 -

language, system
must(?) guess

* Representational
harm if “doctor” is
always assumed to
be male

Mi amigo es doctor

Translations are gender-specific. LEARN MORE

Mi amiga es doctora (feminine)
<)

Mi amigo es doctor (mascuiine)
D)

31
https://ai.googleblog.com/2020/04/a-scalable-approach-to-reducing-gender.html
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Search engine results

o~ w+e Jordan Ward
e 3

* Many results may
“match” a given search ® What the hell is this Google @goog]e

query—which are shown? — T
. ’ Go gle
» Representational harms !

can occur despite literal
match with query

 Similar issues with
gender stereotypes and
occupations

https://www.washingtonpost.com/news/morning-mix/wp/2016/06/10/google-faulted-for-racial-bias-in-image-search-results-for-black- 32

teenagers/
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Conclusion

 Breadth of potential harms
» To individuals being evaluated
» To users attempting to use tools
 To broader society due to shifts in perception

* Different fairness metrics can be fundamentally at odds
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